Over the last 30 years there has been considerable interest in the use of functional electrical stimulation (FES) to restore movement to the limbs of paralyzed patients. Spinal cord injury causes a rapid loss in both muscle mass and contractile force. The atrophy is especially severe when the injury involves lower motoneurons because many months after spinal cord injury, atrophy is complicated by fibrosis and fat substitution. In this study we describe the effects of long-term lower motoneuron denervation of human muscle and present the structural results of muscle trained using FES. By means of an antibody for embryonic myosin, we demonstrate that many regenerative events continue to spontaneously occur in human long-term denervated and degenerated muscle (DDM). In addition, using electron microscopy, we describe i) the overall structure of fibers and myofibrils in long-term denervated and degenerated muscle, including the effects of FES, and ii) the structure and localization of calcium release units, or triads; the structures reputed to activate muscle contraction during excitation-contraction coupling (ECC). Both apparatus undergo disarrangement and re-organization following long-term denervation and FES, respectively. The poor excitability of human long-term DDM fibers, which extends to the first periods of FES training, may be explained in terms of the spatial disorder of the ECC apparatus. Its disorganization and re-organization following long-term denervation and FES, respectively, may play a key role in the parallel disarrangement and re-organization of the myofibrils that characterize denervation and FES training. The present structural studies demonstrate that the protocol used during FES training is effective in reverting long-term denervation atrophy and dystrophy. The mean fiber diameter in FES biopsies is 42.2 +/- 14.8 SD (p < 0.0001 vs DDM 14.9 +/- 6.0 SD); the mean percentile of myofiber area of the biopsy is 94.3 +/- 5.7 SD (p < 0.0001 vs DDM 25.7 +/- 23.7 SD); the mean percentile fat area is 2.1 +/- 2.4 SD (p < 0.001 vs DDM 12.8 +/- 12.1 SD); and the mean percentile connective tissue area is 3.6 +/- 4.6 SD (p < 0.001 vs DDM 61.6 +/- 20.1 SD). In DDM biopsies more than 50% of myofibers have diameter smaller than 10 microm, while the FES-trained subjects have more that 50% of myofibers larger than 30 microm. The recovery of muscle mass seems to be the result of both a size increase of the surviving fibers and the regeneration of new myofibers.
Home-based FES of denervated muscle is an effective home therapy that results in rescue of muscle mass and tetanic contractility. Important immediate benefits for the patients are the improved cosmetic appearance of lower extremities and the enhanced cushioning effect for seating.
Aging is usually accompanied by a significant reduction in muscle mass and force. To determine the relative contribution of inactivity and aging per se to this decay, we compared muscle function and structure in (a) male participants belonging to a group of well-trained seniors (average of 70 years) who exercised regularly in their previous 30 years and (b) age-matched healthy sedentary seniors with (c) active young men (average of 27 years). The results collected show that relative to their sedentary cohorts, muscle from senior sportsmen have: (a) greater maximal isometric force and function, (b) better preserved fiber morphology and ultrastructure of intracellular organelles involved in Ca(2+) handling and ATP production, (c) preserved muscle fibers size resulting from fiber rescue by reinnervation, and (d) lowered expression of genes related to autophagy and reactive oxygen species detoxification. All together, our results indicate that: (a) skeletal muscle of senior sportsmen is actually more similar to that of adults than to that of age-matched sedentaries and (b) signaling pathways controlling muscle mass and metabolism are differently modulated in senior sportsmen to guarantee maintenance of skeletal muscle structure, function, bioenergetic characteristics, and phenotype. Thus, regular physical activity is a good strategy to attenuate age-related general decay of muscle structure and function (ClinicalTrials.gov: NCT01679977).
The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.
Participants: Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. Interventions: Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 mswidth pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. Outcome measures: The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. Results: The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre-to 0.9 ± 0.3 poststimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre-to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. Conclusion: These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.