A small percentage of women with cervical HPV infection progress to cervical neoplasia, and the risk factors determining progression are incompletely understood. We sought to define the genetic loci involved in cervical neoplasia and to assess its heritability using unbiased unrelated case/control statistical approaches. We demonstrated strong association of cervical neoplasia with risk and protective HLA haplotypes that are determined by the amino-acids carried at positions 13 and 71 in pocket 4 of HLA-DRB1 and position 156 in HLA-B. Furthermore, 36% (standard error 2.4%) of liability of HPV-associated cervical pre-cancer and cancer is determined by common genetic variants. Women in the highest 10% of genetic risk scores have approximately >7.1% risk, and those in the highest 5% have approximately >21.6% risk, of developing cervical neoplasia. Future studies should examine genetic risk prediction in assessing the risk of cervical neoplasia further, in combination with other screening methods.
Invasive cervical carcinomas almost invariably carry extra copies of chromosome arm 3q, resulting in a gain of the human telomerase gene (TERC). This provided the rationale for the development of a multicolor fluorescence in situ hybridization (FISH) probe set as a diagnostic tool for the direct detection of TERC gains in Pap smears. We previously used this probe set to show that cervical intraepithelial neoplasia (CIN) 2 and CIN3 lesions could be distinguished from normal samples, atypical squamous cell of undetermined significance (ASCUS) and CIN1, with a sensitivity and specificity exceeding 90%, independent of the cytomorphological assessment. In the current study, we explored whether gain of 3q and amplification of TERC could predict progression from CIN1/CIN2 to CIN3 and invasive carcinoma. We applied our probe set to a series of 59 previously stained Pap smears for which repeat Pap smears and clinical follow-up were available. The samples included CIN1/ CIN2 lesions that progressed to CIN3 (progressors), CIN1/CIN2 lesions that regressed spontaneously (regressors), and normal Pap smears from women who subsequently developed CIN3 or cervical cancer. Here, we show that progressors displayed a gain of 3q whereas none of the regressors showed this genetic aberration. These data suggest that 3q gain is required for the transition from CIN1/CIN2 to CIN3 and that it predicts progression. Of note, 3q gain was found in 33% of cytologically normal Pap smears from women who were diagnosed with CIN3 or invasive cervical carcinoma after a short latency. The sensitivity of our test for predicting progression from CIN1/CIN2 to CIN3 was 100% and the specificity, ie, the prediction of regression, was 70%. We conclude that the detection of 3q gain and amplification of TERC in routinely collected Pap smears can assist in identifying lowgrade lesions with a high progression risk and in decreasing false-negative cytological screenings.
Protein patterns in six samples from primary vaginal cancers, in five from normal vaginal tissue and in five primary cervical cancers, were analysed using two-dimensional polyacrylamide gel electrophoresis (2-DE). Protein expression profile was evaluated by computer-assisted image analysis (PDQUEST) and proteins were subsequently identified using matrix-assisted laser desorption/ ionisation mass spectrometry. The aim was to analyse the protein expression profiles using the hierarchical clustering method in vaginal carcinoma and to compare them with the protein pattern in cervical carcinoma in order to find a helpful tool for correct classification and for increased biomedical knowledge. Protein expression data of a distinct set of 33 protein spots were differentially expressed. These differences were statistically significant (Mann -Whitney signed-Ranked Test, Po0.05) between normal tissue, vaginal and cervical cancer. Furthermore, protein profiles of pairs of primary vaginal and cervical cancers were found to be very similar. Some of the protein spots that have so far been identified include Tropomyosin 1, cytokeratin 5, 15 and 17, Apolipoprotein A1, Annexin V, Glutathione-S-transferase. Others are the stress-related proteins, calreticulin, HSP 27 and HSP 70. We conclude that cluster analysis of proteomics data allows accurate discrimination between normal vaginal mucosa, primary vaginal and primary cervical cancer. However, vaginal and cervical carcinomas also appear to be relatively homogeneous in their gene expression, indicating similar carcinogenic pathways. There might, further, be a possibility to identify tumour-specific markers among the proteins that are differentially expressed. The results from this study have to be confirmed by more comprehensive studies in the future. Primary carcinoma of the vagina (PCV) is a rare disease affecting predominantly postmenopausal women (Pecorelli, 2001). Histologically, the majority of PCV consist of squamous cell carcinomas (Pecorelli, 2001). Owing to the rarity of this disease, little is known about the aetiological and prognostic factors. Like cervical carcinomas, PCV has been shown to be associated with HPV, but only in about 50% of the cases (Daling and Sherman, 1992;Hildesheim et al (1997)). The prognosis for PCV is quite poor with an overall 5-year survival rate of about 50%, which is worse than for cervical carcinoma (Pecorelli, 2001). Early detection is crucial for the prognosis.It has been suggested that vaginal and cervical carcinomas have common aetiology since vaginal tumours often occur as second primary malignancy in patients with a history of cervical dysplasia and/or neoplasia or hysterectomy due to these disorders (Choo and Anderson, 1982;Benedet et al, 1983;Brinton et al, 1990;Eddy et al, 1991;Kirkbride et al, 1995). In the clinical situation, it is sometimes difficult to discriminate between cervical and vaginal carcinomas, especially in patients with prior cervical disease. As 95% of the recurrences of cervical carcinoma occur within 5 years, ma...
Our findings suggest that HLA-C1 group alleles play a role in protecting against HPV16-related cervical neoplasia, mainly through a KIR-mediated mechanism.
The objective was to identify proteins differentially expressed in vaginal cancer to elucidate relevant cancer-related proteins. A total of 16 fresh-frozen tissue biopsies, consisting of 5 biopsies from normal vaginal epithelium, 6 from primary vaginal carcinomas and 5 from primary cervical carcinomas, were analysed using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry. Of the 43 proteins identified with significant alterations in protein expression between non-tumourous and tumourous tissue, 26 were upregulated and 17 were downregulated. Some were similarly altered in vaginal and cervical carcinoma, including cytoskeletal proteins, tumour suppressor proteins, oncoproteins implicated in apoptosis and proteins in the ubiquitin -proteasome pathway. Three proteins were uniquely altered in vaginal carcinoma (DDX48, erbB3-binding protein and biliverdin reductase) and five in cervical carcinoma (peroxiredoxin 2, annexin A2, sarcomeric tropomyosin kappa, human ribonuclease inhibitor and prolyl-4-hydrolase beta). The identified proteins imply involvement of multiple different cellular pathways in the carcinogenesis of vaginal carcinoma. Similar protein alterations were found between vaginal and cervical carcinoma suggesting common tumourigenesis. However, the expression level of some of these proteins markedly differs among the three tissue specimens indicating that they might be useful molecular markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.