The development of the human cerebral cortex is an orchestrated process involving the birth of neural progenitors in the peri-ventricular germinal zones, cell proliferation characterized by both symmetric and asymmetric mitoses, followed by migration of post-mitotic neurons to their final destinations in 6 highly ordered, functionally-specialized layers1,2. An understanding of the molecular mechanisms guiding these intricate processes is in its infancy, substantially driven by the discovery of rare mutations that cause malformations of cortical development (MCD)3-6. Mapping of disease loci in putative Mendelian forms of MCD has been hindered by marked locus heterogeneity, small kindred sizes and diagnostic classifications that may not reflect molecular pathogenesis. Here we demonstrate the use of whole-exome sequencing to overcome these obstacles by identifying recessive mutations in WDR62 as the cause of a wide spectrum of severe cerebral cortical malformations including microcephaly, pachygria with cortical thickening as well as hypoplasia of the corpus callosum. Some patients with WDR62 mutations had evidence of additional abnormalities including lissencephaly, schizencephaly, polymicrogyria and, in one instance, cerebellar hypoplasia, all traits traditionally regarded as distinct entities. In mouse and humans, WDR62 transcripts and protein are enriched in neural progenitors within the ventricular and subventricular zones. WDR62 expression in the neocortex is transient, spanning the period of embryonic neurogenesis. Unlike other known microcephaly genes, WDR62 does not apparently associate with centrosomes and is predominantly nuclear in localization. These findings unify previously disparate aspects of cerebral cortical development and highlight the utility of whole-exome sequencing to identify disease loci in settings in which traditional methods have proved challenging.
Background Studies of copy number variation (CNV) have successfully characterized loci and molecular pathways involved in a range of neuropsychiatric conditions. We conducted an analysis of rare CNVs in Tourette Syndrome (TS) to identify novel risk regions and relevant molecular pathways, evaluate the burden of structural variation in cases versus controls, and to assess the overlap of identified variations with those implicated in other neuropsychiatric syndromes. Methods We conducted a case-control study of 460 individuals with TS, including 148 parent-child trios and 1131 controls. CNV analysis was undertaken using 370K to 1M probe arrays, and genome-wide genotyping data was used to match cases and controls for ancestry. Transmitted and de novo CNVs present in < 1% of the population were evaluated. Results While there was no significant increase in the number of de novo or transmitted rare CNVs in cases versus controls, pathway analysis using multiple algorithms showed enrichment of genes within histamine receptor (H1R and H2R) signaling pathways (p=5.8×10-4-1.6×10-2) as well as “axon guidance”, “cell adhesion”, “nervous system development” and “synaptic structure and function” processes. Genes mapping within rare CNVs in TS showed significant overlap with those previously identified in autism spectrum disorders (ASD), but not intellectual disability or schizophrenia. Three large, likely-pathogenic, de novo events were identified, including one disrupting multiple gamma-Aminobutyric acid (GABA) receptor genes. Conclusions We identify further evidence supporting recent findings regarding the involvement of histaminergic and GABAergic mechanisms in the etiology of TS and show an overlap of rare CNVs in TS and ASD.
The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes–permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.