MEKK1-deficient mice show an eye open at birth phenotype caused by impairment in embryonic eyelid closure. MEK kinase 1 (MEKK1) is highly expressed in the growing tip of the eyelid epithelium, which displays loose cell-cell contacts and prominent F-actin fibers in wild-type mice, but compact cell contacts, lack of polymerized actin and a concomitant impairment in c-Jun N-terminal phosphorylation in MEKK1-deficient mice. In cultured keratinocytes, MEKK1 is essential for JNK activation by TGF-beta and activin, but not by TGF-alpha. MEKK1-driven JNK activation is required for actin stress fiber formation, c-Jun phosphorylation and cell migration. However, MEKK1 ablation does not impair other TGF-beta/activin functions, such as nuclear translocation of Smad4. These results establish a specific role for the MEKK1-JNK cascade in transmission of TGF-beta and activin signals that control epithelial cell movement, providing the mechanistic basis for the regulation of eyelid closure by MEKK1. This study also suggests that the signaling mechanisms that control eyelid closure in mammals and dorsal closure in Drosophila are evolutionarily conserved.
Endogenous TGFbeta enhances migration of corneal epithelium during wound healing in mice. The p38MAPK, but not the Smad, cascade plays a major role in promoting cell migration and in suppressing cell proliferation in migrating epithelium.
Damage to the cornea from chemical burns is a serious clinical problem that often leads to permanent visual impairment. Because transforming growth factor (TGF)- has been implicated in the response to corneal injury, we evaluated the effects of altered TGF- signaling in a corneal alkali burn model using mice treated topically with an adenovirus (Ad) expressing inhibitory Smad7 and mice with a targeted deletion of the TGF-/activin signaling mediator Smad3. Expression of exogenous Smad7 in burned corneal tissue resulted in reduced activation of Smad signaling and nuclear factor-B signaling via RelA/ p65. Resurfacing of the burned cornea by conjunctival epithelium and its differentiation to cornea-like epithelium were both accelerated in Smad7-Adtreated corneas with suppressed stromal ulceration, opacification, and neovascularization 20 days after injury. Introduction of the Smad7 gene suppressed invasion of monocytes/macrophages and expression of monocyte/macrophage chemotactic protein-1, TGF-1, TGF-2, vascular endothelial growth factor, matrix metalloproteinase-9, and tissue inhibitors of metalloproteinase-2 and abolished the generation of myofibroblasts. Although acceleration of healing of the burned cornea was also observed in mice lacking Smad3, the effects on epithelial and stromal healing were less pronounced than those in corneas treated with Smad7. Together these data suggest that overex-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.