Background
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently constitutes the leading and overwhelming health issue worldwide. In comparison with adults, children present milder symptoms, with most having an asymptomatic course. We hypothesized that COVID-19 infection has a negative impact on the continuation of chemotherapy and increases nonrelapse mortality.
Material and methods
This study was performed to assess the course of SARS-CoV-2 among children with hematological or oncological malignancies and its impact on cancer therapy. Records of SARS-CoV-2 infection in 155 children with malignancies from 14 Polish centers for pediatric hematology and oncology were collected and analyzed.
Results
SARS-CoV-2 replication was observed in 155 patients. Forty-nine patients were symptomatic, with the following being the most common manifestations: fever (31 patients), gastrointestinal symptoms (10), coryza (13), cough (13) and headache (8). In children who were retested, the median time of a positive PCR result was 16 days (range 1–70 days), but 12.7% of patients were positive beyond day + 20. The length of viral PCR positivity correlated with the absolute neutrophil count at diagnosis. Seventy-six patients did not undergo further SARS-CoV-2 testing and were considered convalescents after completion of isolation. Antibiotic therapy was administered in 15 children, remdesivir in 6, convalescent plasma in 4, oxygen therapy in 3 (1—mechanical ventilation), steroids in 2, intravenous immunoglobulins in 2, and heparin in 4. Eighty patients were treated with chemotherapy within 30 days after SARS-CoV-2 infection diagnosis or were diagnosed with SARS-CoV-2 infection during 30 days of chemotherapy administration. Respiratory symptoms associated with COVID-19 and associated with oxygen therapy were present in 4 patients in the study population, and four deaths were recorded (2 due to COVID-19 and 2 due to progressive malignancy). The probability of 100-day overall survival was 97.3% (95% CI 92.9–99%). Delay in the next chemotherapy cycle occurred in 91 of 156 cases, with a median of 14 days (range 2–105 days).
Conclusions
For the majority of pediatric cancer patients, SARS-CoV-2 infection does not result in a severe, life-threatening course. Our data show that interruptions in therapy are common and can result in suboptimal therapy.
Introduction: Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in childhood. FTIR spectroscopy provides a holistic view of the chemical composition of biological samples, including the detection of molecules such as nucleic acids, proteins, and lipids. This study evaluated the applicability of FTIR spectroscopy as a potential diagnostic tool for MB. Materials and methods: FTIR spectra of MB samples from 40 children (boys/girls: 31/9; age: median 7.8 years, range 1.5–21.5 years) treated in the Oncology Department of the Children’s Memorial Health Institute in Warsaw between 2010 and 2019 were analyzed. The control group consisted of normal brain tissue taken from four children diagnosed with causes other than cancer. Formalin-fixed and paraffin-embedded tissues were sectioned and used for FTIR spectroscopic analysis. The sections were examined in the mid-infrared range (800–3500 cm−1) by ATR-FTIR. Spectra were analysed using a combination of principal component analysis, hierarchical cluster analysis, and absorbance dynamics. Results: FTIR spectra in MB were significantly different from those of normal brain tissue. The most significant differences related to the range of nucleic acids and proteins in the region 800–1800 cm−1. Some major differences were also revealed in the quantification of protein conformations (α-helices, β-sheets, and others) in the amide I band, as well as in the absorbance dynamics in the 1714–1716 cm−1 range (nucleic acids). It was not, however, possible to clearly distinguish between the various histological subtypes of MB using FTIR spectroscopy. Conclusions: MB and normal brain tissue can be distinguished from one another to some extent using FTIR spectroscopy. As a result, it may be used as a further tool to hasten and enhance histological diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.