We aimed to identify genetic variants associated with heart failure by using a rat model of the human disease. We performed invasive cardiac hemodynamic measurements in F2 crosses between spontaneously hypertensive heart failure (SHHF) rats and reference strains. We combined linkage analyses with genome-wide expression profiling and identified Ephx2 as a heart failure susceptibility gene in SHHF rats. Specifically, we found that cis variation at Ephx2 segregated with heart failure and with increased transcript expression, protein expression and enzyme activity, leading to a more rapid hydrolysis of cardioprotective epoxyeicosatrienoic acids. To confirm our results, we tested the role of Ephx2 in heart failure using knockout mice. Ephx2 gene ablation protected from pressure overload-induced heart failure and cardiac arrhythmias. We further demonstrated differential regulation of EPHX2 in human heart failure, suggesting a cross-species role for Ephx2 in this complex disease.
20-Hydroxyeicosatetraenoic acid (20-HETE) production is increased in ischemic kidney tissue and may contribute to ischemia/reperfusion (I/R) injury by mediating vasoconstriction and inflammation. To test this hypothesis, uninephrectomized male Lewis rats were exposed to warm ischemia following pretreatment with either an inhibitor of 20-HETE synthesis (HET0016), an antagonist (20-hydroxyeicosa-6(Z),15(Z)-dienoic acid), an agonist (20-hydroxyeicosa-5(Z),14(Z)-dienoic acid), or vehicle via the renal artery and the kidneys were examined 2 days after reperfusion. Pretreatment with either the inhibitor or the antagonist attenuated I/R-induced renal dysfunction as shown by improved creatinine clearance and decreased plasma urea levels, compared to controls. The inhibitor and antagonist also markedly reduced tubular lesion scores, inflammatory cell infiltration, and tubular epithelial cell apoptosis. Administering the antagonist accelerated the recovery of medullary perfusion, as well as renal medullary and cortical re-oxygenation, during the early reperfusion phase. In contrast, the agonist did not improve renal injury and reversed the beneficial effect of the inhibitor. Thus, 20-HETE generation and its action mediated kidney injury due to I/R. Whether or not these effects are clinically important will need to be tested in appropriate human studies.
Abstract-P450-dependent arachidonic acid (AA) metabolites regulate arterial tone by modulating calcium-activated (BK) potassium channels in vascular smooth muscle cells (VSMC). Because eicosapentaenoic acid (EPA) has been reported to improve vascular function, we tested the hypothesis that P450-dependent epoxygenation of EPA produces alternative vasoactive compounds. We synthesized the 5 regioisomeric epoxyeicosattrienoic acids (EETeTr) and examined them for effects on K ϩ currents in rat cerebral artery VSMCs with the patch-clamp technique. 11(R),12(S)-epoxyeicosatrienoic acid (50 nmol/L) was used for comparison and stimulated K ϩ currents 6-fold at ϩ60 mV. However, 17(R),18(S)-EETeTr elicited a more than 14-fold increase. 17(S),18(R)-EET and the remaining four regioisomers were inactive. The effect of 17(R),18(S)-EETeTr was blocked by tetraethylammonium but not by 4-aminopyridine. VSMCs expressed P450s 4A1 and 4A3. Recombinant P450 4A1 hydroxylated EPA at C-19 and C-20 and epoxygenated the 17,18-double bond, yielding the R, S-and S, R-enantiomers in a ratio of 64:36. We conclude that 17(R),18(S)-EETeTr represents a novel, potent activator of BK potassium channels. Furthermore, this metabolite can be directly produced in VSMCs. We suggest that 17(R),18(S)-EETeTr may function as an important hyperpolarizing factor, particularly with EPA-rich diets. Key Words: vascular smooth muscle cells Ⅲ endothelium-derived factors Ⅲ potassium channels Ⅲ cytochrome P450 D ietary fish oil or purified (n-3) long-chain polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) exert a wide range of beneficial effects on vascular function. 1,2 Endothelium-dependent relaxation is enhanced and the vasoconstrictor response to angiotensin II and norepinephrine is reduced because of mechanisms that are incompletely understood. [3][4][5][6] Possibly, EPA and other (n-3) PUFA compete with arachidonic acid (AA) for enzymatic conversion by P450 enzymes. This competition may lead to a reduced formation of vasoactive AA metabolites while alternative metabolites originating from EPA are increased. The P450-dependent AA metabolites result from epoxygenation and hydroxylation and include the epoxyeicosatrienoic acids (EET) 5,6-, 8,9-, 11,12 to 14,15-EET, and the /(-1)-hydroxyeicosatetraenoic acids . 7 EETs are produced in the endothelium by the P450 subfamilies 2C and 2J. 8,9 EETs activate large-conductance, calcium-activated (BK) K ϩ channels in vascular smooth muscle cells (VSMC) and are considered as leading candidates for the endothelium-derived hyperpolarizing factor (EDHF). 8,10,11 20-HETE is produced by P450 4A enzymes in VSMC and acts as endogenous vasoconstrictor that inhibits BK channels. 20-HETE is important for the autoregulation of renal and cerebral blood flow. [12][13][14][15] How AA metabolite production is influenced by EPA competition for P450 enzymes, and whether or not P450-dependent EPA metabolites modulate BK channels, is unknown. We synthesized the five possible regioisomeric epoxyeicosatetraenoic acids: 5,6...
Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)-epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with ω-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed ω-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary ω-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from ω-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD.choroidal neovascularization | immune cell recruitment | PPARγ | adhesion molecules | epoxy-metabolites
17(R),18(S)-Epoxyeicosatetraenoic acid [17(R),18(S)-EETeTr], a cytochrome P450 epoxygenase metabolite of eicosapentaenoic acid (EPA), exerts negative chronotropic effects and protects neonatal rat cardiomyocytes against Ca2+-overload with an EC50 ~1–2 nM. Structure-activity studies revealed a cis-Δ11,12- or Δ14,15-olefin and a 17(R),18(S)-epoxide are minimal structural elements for anti-arrhythmic activity whereas antagonist activity was often associated with the combination of a Δ14,15-olefin and a 17(S),18(R)-epoxide. Compared with natural material, the agonist and antagonist analogs are chemically and metabolically more robust and several show promise as templates for future development of clinical candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.