In this work we describe for the first time the integration of "smart" polymer brushes into single conical nanopores to obtain a new highly functional signal-responsive chemical nanodevice. The responsive brushes were constituted of zwitterionic monomers whose charge is regulated via pH changes in the environmental conditions. The pH-dependent chemical equilibrium of the monomer units provides a fine-tuning of the ionic transport though the nanopore by simply presetting the pH of the electrolyte solution. Our results demonstrate that this strategy enables a higher degree of control over the rectification properties when compared to the nanochannels modified with charged monolayer assemblies. We envision that these results will create completely new avenues to build-up "smart" nanodevices using responsive polymer brushes integrated into single conical nanopores.
The use of fixed charge nanopores in practical applications requires tuning externally the electrostatic interaction between the charged groups and the ionic permeants in order to allow integrating a variety of functions on the same nanostructure. We design, produce, and characterize, theoretically and experimentally, a single-track amphoteric nanopore functionalized with lysine and histidine chains whose positive and negative charges are very sensitive to the external pH. This nanofluidic diode with amphoteric chains attached to the pore surface allows for a broad set of rectification properties supported by a single nanodevice. A definite plus is to functionalize these groups on a conical nanopore with well-defined, controlled structural asymmetry which gives virtually every rectification characteristic that may be required in practical applications. Nanometerscaled amphoteric pores are of general interest because of the potential applications in drug delivery systems, ion-exchange membranes for separation of biomacromolecules, antifouling materials with reduced molecular adsorption, and biochemical sensors.
Molecular design of ionic current rectifiers created on the basis of single conical nanopores is receiving increasing attention by the scientific community. Part of the appeal of this topic relies on the interest in sensors and fluidic nanoactuators based on the transport of ions and molecules through nanopore architectures that can readily be integrated into functional systems. The chemical modification of the pore walls controls not only the diameter of these nanoarchitectures but also their selectivity and transport properties. In order to confer selectivity to solid-state nanopores, it is necessary to develop and explore new methods for functionalizing the pore walls. Hence, the creation of functional nanopores capable of acting as selective ion channels or smart nanofluidic sensors depends critically on our ability to assemble and build up molecular architectures in a predictable manner within confined geometries with dimensions comparable to the size of the building blocks themselves. In this context, layer-by-layer deposition of polyelectrolytes offers a straightforward process for creating nanoscopic supramolecular assemblies displaying a wide variety of functional features. In this work, we describe for the first time the integration of layer-by-layer polyelectrolyte assemblies into single conical nanopores in order to study and explore the functional features arising from the creation of charged supramolecular assemblies within the constrained geometry of the nanofluidic device. To address this challenging topic, we used a combined experimental and theoretical approach to elucidate and quantify the electrostatic changes taking place inside the nanopore during the supramolecular assembly process. The multilayered films were built up through consecutive layer-by-layer adsorption of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate) (PSS) on the pore surface. Our results show that the charge transport properties of single conical nanopores functionalized with PAH/PSS assemblies are highly dependent on the number of layers assembled on the pore wall. In contrast to what happens with PAH/PSS films deposited on planar surfaces (quantitative charge reversal), the surface charge of the pore walls decreases dramatically with the number of PAH/PSS layers assembled into the nanopore. This behavior was attributed to the nanoconfinement-induced structural reorganization of the polyelectrolyte layers, leading to the efficient formation of ion pairs and promoting a marked decrease in the net fixed charges on the nanopore walls. We consider that these results are of paramount relevance for the modification of nanopores, nanopipets, and nanoelectrodes using charged supramolecular assemblies, as well as of importance in "soft nanotechnology" provided that structural complexity, induced by nanoconfinement, can define the functional properties of self-assembled polymeric nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.