Background-Intracoronary transfer of autologous bone marrow cells (BMCs) promotes recovery of left ventricular systolic function in patients with acute myocardial infarction. Although the mechanisms of this effect remain to be established, homing of BMCs into the infarcted myocardium is probably a critical early event. Methods and Results-We determined BMC biodistribution after therapeutic application in patients with a first ST-segment-elevation myocardial infarction who had undergone stenting of the infarct-related artery. Unselected BMCs were radiolabeled with 100 MBq 2-[ 18 F]-fluoro-2-deoxy-D-glucose ( 18 F-FDG) and infused into the infarct-related coronary artery (intracoronary; nϭ3 patients) or injected via an antecubital vein (intravenous; nϭ3 patients). In 3 additional patients, CD34-positive (CD34 ϩ ) cells were immunomagnetically enriched from unselected BMCs, labeled with 18 F-FDG, and infused intracoronarily. Cell transfer was performed 5 to 10 days after stenting. More than 99% of the infused total radioactivity was cell bound. Nucleated cell viability, comparable in all preparations, ranged from 92% to 96%. Fifty to 75 minutes after cell transfer, all patients underwent 3D PET imaging. After intracoronary transfer, 1.3% to 2.6% of 18 F-FDG-labeled unselected BMCs were detected in the infarcted myocardium; the remaining activity was found primarily in liver and spleen. After intravenous transfer, only background activity was detected in the infarcted myocardium. After intracoronary transfer of 18 F-FDG-labeled CD34-enriched cells, 14% to 39% of the total activity was detected in the infarcted myocardium. Unselected BMCs engrafted in the infarct center and border zone; homing of CD34-enriched cells was more pronounced in the border zone. Conclusions-18 F-FDG labeling and 3D PET imaging can be used to monitor myocardial homing and biodistribution of BMCs after therapeutic application in patients.
68Ge/68Ga generators provide cyclotron-independent access to positron emission tomography (PET) radiopharmaceuticals. We describe a system which allows the safe and efficient handling of 68Ge/68Ga generator eluates for labelling of DOTA-derivatised peptide ligands. The system comprises concentration and purification of the 68Ga eluate as well as labelling and purification steps for peptides, and can be used with different 68Ge/68Ga generator types. The suitability and efficiency were tested with two different DOTA-derivatised somatostatin derivatives and a DOTA-derivatised bombesin derivative. Amounts of 10-20 nmol of the peptides were sufficient and resulted in labelling yields of 50% for all peptides. The built-in safety precautions have proven to be appropriate in allowing use of the method for routine clinical applications. The system was set up and operated in a "hot lab" by personnel with no previous experience in the preparation of PET radiopharmaceuticals.
Visualisation of primary prostate cancer, its relapse and its metastases is a clinically relevant problem despite the availability of state-of-the-art methods such as CT, MRI, transrectal ultrasound and fluorine-18 fluorodeoxyglucose positron emission tomography ((18)F-FDG PET). The aim of this study was to evaluate the efficacy of carbon-11 acetate and (18)F-FDG PET in the detection of prostate cancer and its metastases. Twenty-five patients were investigated during the follow-up of primary prostate cancer, suspected relapse or metastatic disease using (11)C-acetate PET; 15 of these patients were additionally investigated using (18)F-FDG PET. Fourteen patients were receiving anti-androgen treatment at the time of the investigation. Lesions were detected in 20/24 (83%) patients using (11)C-acetate PET and in 10/15 (75%) patients using (18)F-FDG PET. Based on the results of both PET scans, one patient was diagnosed with recurrent lung cancer. Median (18)F-FDG uptake exceeded that of (11)C-acetate in distant metastases (SUV =3.2 vs 2.3). However, in local recurrence and in regional lymph node metastases, (11)C-acetate uptake (median SUVs =2.9 and 3.8, respectively) was higher than that of (18)F-FDG (median SUVs =1.0 and 1.1, respectively). A positive correlation was observed between serum PSA level and both (11)C-acetate uptake and (18)F-FDG uptake. (11)C-acetate seems more useful than (18)F-FDG in the detection of local recurrences and regional lymph node metastases. (18)F-FDG, however, appears to be more accurate in visualising distant metastases. There may be a role for combined (11)C-acetate/(18)F-FDG PET in the follow-up of patients with prostate cancer and persisting or increasing PSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.