SUMMARY Therapeutic antibodies targeting programmed cell death-1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy.
Atopic dermatitis (AD) is a complex skin disease frequently associated with other diseases of the atopic diathesis. Recent evidence supports the concept that AD can also recognize other comorbidities, such as chronic inflammatory bowel or cardiovascular diseases. These comorbidities might result from chronic cutaneous inflammation or from a common, yet-to-be-defined immunologic background leading to immune deviations. The activation of immune cells and their migration to the skin play an essential role in the pathogenesis of AD. In patients with AD, an underlying immune deviation might result in higher susceptibility of the skin to environmental factors. There is a high unmet medical need to define immunologic endotypes of AD because it has significant implications on upcoming stratification of the phenotype of AD and the resulting targeted therapies in the development of precision medicine. This review article emphasizes studies on environmental factors affecting AD development and novel biological agents used in the treatment of AD. Best evidence of the clinical efficacy of novel immunologic approaches using biological agents in patients with AD is available for the anti-IL-4 receptor α-chain antibody dupilumab, but a number of studies are currently ongoing with other specific antagonists to immune system players. These targeted molecules can be expressed on or drive the cellular players infiltrating the skin (eg, T lymphocytes, dendritic cells, or eosinophils). Such approaches can have immunomodulatory and thereby beneficial clinical effects on the overall skin condition, as well as on the underlying immune deviation that might play a role in comorbidities. An effect of these immunologic treatments on pruritus and the disturbed microbiome in patients with AD has other potential consequences for treatment.
Derailed cytokine and immune cell networks account for organ damage and clinical severity of COVID-19 [1][2][3][4] . Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and accompanied by a senescence-associated secretory phenotype (SASP), composed of pro-inflammatory cytokines, extracellular matrix-active factors and pro-coagulatory mediators [5][6][7] . COVID-19 patients displayed markers of senescence in their airway mucosa in situ and elevated serum levels of SASP factors. Mirroring COVID-19 hallmark features such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue 1,8,9 , in vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, neutrophil extracellular trap (NET) formation as well as activation of platelets and the clotting cascade in response to supernatant of VIS cells, including SARS-CoV-2-induced senescence. Senolytics such as Navitoclax and Dasatinib/Quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-driven hamster and mouse models. Our findings mark VIS as pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest senolytic targeting of virus-infected cells as a novel treatment option against SARS-CoV-2 and perhaps other viral infections.The pandemic human pathogenic SARS-CoV-2 coronavirus causes upper respiratory infections and subsequently COVID-19 lung disease that may get further complicated by septic multi-organ failure and comes with significant mortality 10,11 . Escalating immune activation with massive cytokine release seems to drive severe COVID-19 1-3 , possibly more than the virus infection itself. Mechanisms of viral
Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.