Virulence factors and biofilms constitute attractive targets for the prevention of infections caused by multidrug-resistant bacteria. Among alkyl gallates, propyl gallate (PG) and octyl gallate (OG) are used as food preservatives. Here we found that alkyl gallates differentially affect virulence, biofilm formation, and quorum sensing (QS) in
Pseudomonas aeruginosa
. Ethyl gallate (EG), PG, and butyl gallate (BG) inhibited biofilm formation and virulence factors including elastase, pyocyanin, and rhamnolipid, in
P. aeruginosa
without affecting cell viability by antagonizing the QS receptors LasR and RhlR. PG exhibited the most potent activity. Interestingly, hexyl gallate (HG) inhibited the production of rhamnolipid and pyocyanin but did not affect elastase production or biofilm formation. Notably, OG inhibited the production of rhamnolipid and pyocyanin but stimulated elastase production and biofilm formation. Analysis of QS signaling molecule production and QS gene expression suggested that HG inhibited RhlR, while OG activated LasR but inhibited PqsR. This mechanism was confirmed using QS mutants. Additionally, PG prevented the virulence of
P. aeruginosa
in
Caenorhabditis elegans
and a mouse model. This is the first report of the differential effects of alkyl gallates on QS systems and PG has great potential as an inhibitor of the virulence and biofilm formation of
P. aeruginosa
.
Seven new coralmycin derivatives, coralmycins C (1), D (2), E (3), F (4), G (5), H (6), and I (7), along with three known compounds, cystobactamids 891-2 (8), 905-2 (9), and 507 (10), were isolated from a large-scale culture of the myxobacteria Corallococcus coralloides M23. The structures of these compounds, including their relative stereochemistries, were elucidated by interpretation of their spectroscopic and CD data. The structure-activity relationships of their antibacterial and DNA gyrase inhibitory activities indicated that the para-nitrobenzoic acid unit is critical for the inhibition of DNA gyrase and bacterial growth, while the nitro moiety of the para-nitrobenzoic acid unit and the isopropyl chain at C-4 could be important for permeability into certain Gram-negative bacteria, including Pseudomonas aeruginosa and Klebsiella pneumoniae, and the β-methoxyasparagine moiety could affect cellular uptake into all tested bacteria. These results could facilitate the chemical optimization of coralmycins for the treatment of multidrug-resistant Gram-negative bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.