‘Carabidologists do it all’ (Niemelä 1996a) is a phrase with which most European carabidologists are familiar. Indeed, during the last half a century, professional and amateur entomologists have contributed enormously to our understanding of the basic biology of carabid beetles. The success of the field is in no small part due to regular European Carabidologists’ Meetings, which started in 1969 in Wijster, the Netherlands, with the 14th meeting again held in the Netherlands in 2009, celebrating the 40th anniversary of the first meeting and 50 years of long-term research in the Dwingelderveld. This paper offers a subjective summary of some of the major developments in carabidology since the 1960s. Taxonomy of the family Carabidae is now reasonably established, and the application of modern taxonomic tools has brought up several surprises like elsewhere in the animal kingdom. Progress has been made on the ultimate and proximate factors of seasonality and timing of reproduction, which only exceptionally show non-seasonality. Triggers can be linked to evolutionary events and plausibly explained by the “taxon cycle” theory. Fairly little is still known about certain feeding preferences, including granivory and ants, as well as unique life history strategies, such as ectoparasitism and predation on higher taxa. The study of carabids has been instrumental in developing metapopulation theory (even if it was termed differently). Dispersal is one of the areas intensively studied, and results show an intricate interaction between walking and flying as the major mechanisms. The ecological study of carabids is still hampered by some unresolved questions about sampling and data evaluation. It is recognised that knowledge is uneven, especially concerning larvae and species in tropical areas. By their abundance and wide distribution, carabid beetles can be useful in population studies, bioindication, conservation biology and landscape ecology. Indeed, 40 years of carabidological research have provided so much data and insights, that among insects - and arguably most other terrestrial organisms - carabid beetles are one of the most worthwhile model groups for biological studies.
The establishment of the potential vector species Aedes (Finlaya) japonicusjaponicus (Theobald) (Diptera: Culicidae) in southern Belgium is reported. The species was most likely introduced through the international trade in used tires. It was first collected in 2002 on the premises of a second-hand tire company and was sampled using different sampling methods in the two consecutive years (2003-2004). It was only in 2007 and 2008, during a national mosquito survey (MODIRISK), that its presence as adults and larvae at the above-mentioned site and at another tire company in the area was confirmed based on morphological and molecular identification. This discovery is the first record for Belgium of an exotic mosquito species that established successfully and raises the question on the need for monitoring and control. Considering the accompanying species found during the surveys, we also report here the first observation of Culex (Maillotia) hortensis hortensis (Ficalbi) in Belgium.
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well-supported clusters. Intraspecific Kimura 2-parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra- and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.
To advance our restricted knowledge on mosquito biodiversity and distribution in Belgium, a national inventory started in 2007 (MODIRISK) based on a random selection of 936 collection points in three main environmental types: urban, rural and natural areas. Additionally, 64 sites were selected because of the risk of importing a vector or pathogen in these sites. Each site was sampled once between May and October 2007 and once in 2008 using Mosquito Magnet Liberty Plus traps. Diversity in pre-defined habitat types was calculated using three indices. The association between species and environmental types was assessed using a correspondence analysis. Twenty-three mosquito species belonging to traditionally recognized genera were found, including 21 indigenous and two exotic species. Highest species diversity (Simpson 0.765) and species richness (20 species) was observed in natural areas, although urban sites scored also well (Simpson 0.476, 16 species). Four clusters could be distinguished based on the correspondence analysis. The first one is related to human modified landscapes (such as urban, rural and industrial sites). A second is composed of species not associated with a specific habitat type, including the now widely distributed Anopheles plumbeus. A third group includes species commonly found in restored natural or bird migration areas, and a fourth cluster is composed of forest species. Outcomes of this study demonstrate the effectiveness of the designed sampling scheme and support the choice of the trap type. Obtained results of this first country-wide inventory of the Culicidae in Belgium may serve as a basis for risk assessment of emerging mosquito-borne diseases.
Climate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance. We found a consistent impact of temperature change on the local abundances of terrestrial species. Populations of warm-dwelling species increased more than those of cold-dwelling species. In contrast, impacts of temperature change on aquatic species' abundances were variable. Effects of temperature preference were more consistent in terrestrial communities than effects of habitat preference, suggesting that the impacts of temperature change have become widespread for recent changes in abundance within many terrestrial communities of central Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.