Foot ulcers are one of the most common and severe complication of diabetes mellitus with significant resultant morbidity and mortality. Multiple factors impair wound healing include skin injury, diabetic neuropathy, ischemia, infection, inadequate glycemic control, poor nutritional status, and severe morbidity. It is currently believed that oxidative stress plays a vital role in diabetic wound healing. An imbalance of free radicals and antioxidants in the body results in overproduction of reactive oxygen species which lead to cell, tissue damage, and delayed wound healing. Therefore, decreasing ROS levels through antioxidative systems may reduce oxidative stress-induced damage to improve healing. In this context, we provide an update on the role of oxidative stress and antioxidants in diabetic wound healing through following four perspectives. We then discuss several therapeutic strategies especially dietary bioactive compounds by targeting oxidative stress to improve wounds healing.
Background. Our study aimed to observe the effect of sodium glucose cotransporter-2 (SGLT2) inhibitor dapagliflozin on diabetic atherosclerosis and investigate the subsequent mechanism. Methods. Aortic atherosclerosis was induced in streptozotocin induced diabetic ApoE−/− mice by feeding with high-fat diet, and dapagliflozin was administrated intragastrically for 12 weeks as treatment. Effects of dapagliflozin on indices of glucose and fat metabolism, IL-1β, IL-18, NLRP3 protein levels, and the reactive oxygen species (ROS) were measured. The atherosclerosis was evaluated by oil red O and hematoxylin-eosin staining. The effects of dapagliflozin on the IL-1β production in culturing primary macrophages of wild type and NLRP3−/− knockout mice were investigated for mechanism analyses. Results. Dapagliflozin treatment showed favorable effects on glucose and fat metabolism, partially reversed the formation of atherosclerosis, inhibited macrophage infiltration, and enhanced the stability of lesion. Also, reduced production of IL-1β, IL-18, NLRP3 protein, and mitochondrial ROS in the aortic tissues was detected with dapagliflozin treatment. In vitro, NLRP3 inflammasome was activated by hyperglucose and hyperlipid through ROS pathway. Conclusions. Dapagliflozin may be of therapeutic potential for diabetic atherosclerosis induced by high-fat diet, and these benefits may depend on the inhibitory effect on the secretion of IL-1β by macrophages via the ROS-NLRP3-caspase-1 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.