This paper will discuss the design and construction of BESIII [1], which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + ecollider [2]. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in the steel magnetic flux return. The level 1 trigger system, Data Acquisition system and the event filter system based on networked computers will also be described.
We study e+e-→π+π-hc at center-of-mass energies from 3.90 to 4.42 GeV by using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross sections are measured at 13 energies and are found to be of the same order of magnitude as those of e+e-→π+π-J/ψ but with a different line shape. In the π±hc mass spectrum, a distinct structure, referred to as Zc(4020), is observed at 4.02 GeV/c2. The Zc(4020) carries an electric charge and couples to charmonium. A fit to the π±hc invariant mass spectrum, neglecting possible interferences, results in a mass of (4022.9±0.8±2.7) MeV/c2 and a width of (7.9±2.7±2.6) MeV for the Zc(4020), where the first errors are statistical and the second systematic. The difference between the parameters of this structure and the Zc(4025) observed in the D*D[over ¯]* final state is within 1.5σ, but whether they are the same state needs further investigation. No significant Zc(3900) signal is observed, and upper limits on the Zc(3900) production cross sections in π±hc at center-of-mass energies of 4.23 and 4.26 GeV are set.
We report on a study of the process e+ e- → π± (DD*)∓ at sqrt[s] = 4.26 GeV using a 525 pb(-1) data sample collected with the BESIII detector at the BEPCII storage ring. A distinct charged structure is observed in the (DD*)∓ invariant mass distribution. When fitted to a mass-dependent-width Breit-Wigner line shape, the pole mass and width are determined to be Mpole = (3883.9±1.5(stat)±4.2(syst)) MeV/c2 and Γpole = (24.8±3.3(stat)±11.0(syst)) MeV. The mass and width of the structure, which we refer to as Zc(3885), are 2σ and 1σ, respectively, below those of the Zc(3900) → π± J/ψ peak observed by BESIII and Belle in π+ π- J/ψ final states produced at the same center-of-mass energy. The angular distribution of the πZc(3885) system favors a JP = 1+ quantum number assignment for the structure and disfavors 1- or 0-. The Born cross section times the DD* branching fraction of the Zc(3885) is measured to be σ(e+ e- → π± Zc(3885)∓)×B(Zc(3885)∓ → (DD*)∓) = (83.5±6.6(stat)±22.0(syst)) pb. Assuming the Zc(3885) → DD* signal reported here and the Zc(3900) → πJ/ψ signal are from the same source, the partial width ratio (Γ(Zc(3885) → DD*)/Γ(Zc(3900) → πJ/ψ)) = 6.2±1.1(stat)±2.7(syst) is determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.