Angular distributions of the decay B 0 → K * 0 µ + µ − are studied using a sample of proton-proton collisions at √ s = 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb −1 . An angular analysis is performed to determine the P 1 and P 5 parameters, where the P 5 parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the P 1 and P 5 parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.
In an analysis of a 2.92 fb −1 data sample taken at 3.773 GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions B(D 0 → K − e + νe) = (3.505 ± 0.014 ± 0.033)% and B(D 0 → π − e + νe) = (0.295 ± 0.004 ± 0.003)%. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the CKM matrix element f ), we determine the ratio |V cd |/|Vcs| = 0.238 ± 0.004 ± 0.002 ± 0.011, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.
A search for a signal consistent with the type-III seesaw mechanism in events with three or more electrons or muons is presented. The data sample consists of proton-proton collisions at sqrt[s]=13 TeV collected by the CMS experiment at the LHC in 2016 and corresponds to an integrated luminosity of 35.9 fb^{-1}. Selection criteria based on the number of leptons and the invariant mass of oppositely charged lepton pairs are used to distinguish the signal from the standard model background. The observations are consistent with the expectations from standard model processes. The results are used to place limits on the production of heavy fermions of the type-III seesaw model as a function of the branching ratio to each lepton flavor. In the scenario of equal branching fractions to each lepton flavor, heavy fermions with masses below 840 GeV are excluded. This is the most sensitive probe to date of the type-III seesaw mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.