Background Although several COVID-19 vaccines have been developed so far, they will not be sufficient to meet the global demand. Development of a wider range of vaccines, with different mechanisms of action, could help control the spread of SARS-CoV-2 globally. We developed a protein subunit vaccine against COVID-19 using a dimeric form of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein as the antigen. We aimed to assess the safety and immunogenicity of this vaccine, ZF2001, and determine the appropriate dose and schedule for an efficacy study. Methods We did two randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Phase 1 was done at two university hospitals in Chongqing and Beijing, China, and phase 2 was done at the Hunan Provincial Center for Disease Control and Prevention in Xiangtan, China. Healthy adults aged 18–59 years, without a history of SARS-CoV or SARS-CoV-2 infection, an RT-PCR-positive test result for SARS-CoV-2, a history of contact with confirmed or suspected COVID-19 cases, and severe allergies to any component of the vaccine were eligible for enrolment. In phase 1, participants were randomly assigned (2:2:1) to receive three doses of the vaccine (25 μg or 50 μg) or placebo intramuscularly, 30 days apart. In phase 2, participants were randomly assigned (1:1:1:1:1:1) to receive the vaccine (25 μg or 50 μg) or placebo intramuscularly, 30 days apart, in either a two-dose schedule or a three-dose schedule. Investigators, participants, and the laboratory team were masked to group allocation. For phase 1, the primary outcome was safety, measured by the occurrence of adverse events and serious adverse events. For phase 2, the primary outcome was safety and immunogenicity (the seroconversion rate and the magnitude, in geometric mean titres [GMTs], of SARS-CoV-2-neutralising antibodies). Analyses were done on an intention-to-treat and per-protocol basis. These trials are registered with ClinicalTrials.gov ( NCT04445194 and NCT04466085 ) and participant follow-up is ongoing. Findings Between June 22 and July 3, 2020, 50 participants were enrolled into the phase 1 trial and randomly assigned to receive three doses of placebo (n=10), the 25 μg vaccine (n=20), or the 50 μg vaccine (n=20). The mean age of participants was 32·6 (SD 9·4) years. Between July 12 and July 17, 2020, 900 participants were enrolled into the phase 2 trial and randomly assigned to receive two doses of placebo (n=150), 25 μg vaccine (n=150), or 50 μg vaccine (n=150), or three doses of placebo (n=150), 25 μg vaccine (n=150), or 50 μg vaccine (n=150). The mean age of participants was 43·5 (SD 9·2) years. In both phase 1 and phase 2, adverse events reported within 30 days after vaccination were mild or moderate (grade 1 or 2) in most cases (phase 1: six [60%] of ten participants in the placebo group, 14 [70%] of 20 in the 25 μg group, and 18 [90...
Learning and memory are fundamental brain functions affected by dietary and environmental factors. Here, we show that increasing brain magnesium using a newly developed magnesium compound (magnesium-L-threonate, MgT) leads to the enhancement of learning abilities, working memory, and short- and long-term memory in rats. The pattern completion ability was also improved in aged rats. MgT-treated rats had higher density of synaptophysin-/synaptobrevin-positive puncta in DG and CA1 subregions of hippocampus that were correlated with memory improvement. Functionally, magnesium increased the number of functional presynaptic release sites, while it reduced their release probability. The resultant synaptic reconfiguration enabled selective enhancement of synaptic transmission for burst inputs. Coupled with concurrent upregulation of NR2B-containing NMDA receptors and its downstream signaling, synaptic plasticity induced by correlated inputs was enhanced. Our findings suggest that an increase in brain magnesium enhances both short-term synaptic facilitation and long-term potentiation and improves learning and memory functions.
Limited data are available for clinical characteristics of patients with coronavirus disease 2019 (COVID-19) outside Wuhan. This study aimed to describe the clinical characteristics of COVID-19 and identify the risk factors for severe illness of COVID-19 in Jiangsu province, China. Clinical data of hospitalized COVID-19 patients were retrospectively collected in 8 hospitals from 8 cities of Jiangsu province, China. Clinical findings of COVID-19 patients were described and risk factors for severe illness of COVID-19 were analyzed. By Feb 10, 2020, 202 hospitalized patients with COVID-19 were enrolled. The median age of patients was 44.0 years (interquartile range, 33.0-54.0). 55 (27.2%) patients had comorbidities. At the onset of illness, the common symptoms were fever (156 [77.2%]) and cough (120 [59.4%]). 66 (32.7%) patients had lymphopenia. 193 (95.5%) patients had abnormal radiological findings. 11 (5.4%) patients were admitted to the intensive care unit and none of the patients died. 23 (11.4%) patients had severe illness. Severe illness of COVID-19 was independently associated with body mass index (BMI) � 28 kg/m 2 (odds ratio [OR], 9.219; 95% confidence interval [CI], 2.731 to 31.126; P<0.001) and a known history of type 2 diabetes PLOS NEGLECTED TROPICAL DISEASES PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.
Radiation-induced bystander effects (RIBE) refer to a unique process, in which factors released by irradiated cells or tissues exert effects on other parts of the animal not exposed to radiation, causing genomic instability, stress responses, and altered apoptosis or cell proliferation1–3. Despite important implications in radioprotection, radiation safety and radiotherapy, the molecular identities of RIBE factors and their mechanisms of action remain elusive. Here we use C. elegans as an animal model to study RIBE and have identified a cysteine protease CPR-4, a human cathepsin B homolog, as the first RIBE factor in nematodes. CPR-4 is secreted from animals irradiated with ultraviolet (UV) or ionizing gamma rays (IR) and is the major factor in the conditioned medium that leads to inhibition of cell death and increased embryonic lethality in unirradiated animals. Moreover, CPR-4 causes these effects and stress response at unexposed sites distal to the irradiated tissue. The activity of CPR-4 is regulated by the p53 homolog cep-1 in response to radiation and CPR-4 appears to act through the insulin-like growth factor receptor, DAF-2, to exert RIBE. Our study provides critical insights into the elusive RIBE and will facilitate identification of additional RIBE factors and their mechanisms of action.
Hepatitis B virus (HBV) X protein, HBx, interacts with anti-apoptotic Bcl-2 and Bcl-xL proteins through its BH3-like motif to promote HBV replication and cytotoxicity. Here we report the crystal structure of HBx BH3-like motif in complex with Bcl-xL where the BH3-like motif adopts a short α-helix to snuggle into a hydrophobic pocket in Bcl-xL via its noncanonical Trp120 residue and conserved Leu123 residue. This binding pocket is ~2 Å away from the canonical BH3-only binding pocket in structures of Bcl-xL with proapoptotic BH3-only proteins. Mutations altering Trp120 and Leu123 in HBx impair its binding to Bcl-xL in vitro and HBV replication in vivo, confirming the importance of this motif to HBV. A HBx BH3-like peptide, HBx-aa113-135, restores HBV replication from a HBx-null HBV replicon, while a shorter peptide, HBx-aa118-127, inhibits HBV replication. These results provide crucial structural and functional insights into drug designs for inhibiting HBV replication and treating HBV patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.