Recently, Hyperspectral Image (HSI) classification has gradually been getting attention from more and more researchers. HSI has abundant spectral and spatial information; thus, how to fuse these two types of information is still a problem worth studying. In this paper, to extract spectral and spatial feature, we propose a Double-Branch Multi-Attention mechanism network (DBMA) for HSI classification. This network has two branches to extract spectral and spatial feature respectively which can reduce the interference between the two types of feature. Furthermore, with respect to the different characteristics of these two branches, two types of attention mechanism are applied in the two branches respectively, which ensures to extract more discriminative spectral and spatial feature. The extracted features are then fused for classification. A lot of experiment results on three hyperspectral datasets shows that the proposed method performs better than the state-of-the-art method.
We conducted a cross-trait meta-analysis of genome-wide association study on schizophrenia (SCZ) (n = 65,967), bipolar disorder (BD) (n = 41,653), autism spectrum disorder (ASD) (n = 46,350), attention deficit hyperactivity disorder (ADHD) (n = 55,374), and depression (DEP) (n = 688,809). After the meta-analysis, the number of genomic loci
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.