This paper introduces a novel rotation-based framework for arbitrary-oriented text detection in natural scene images. We present the Rotation Region Proposal Networks (RRPN), which are designed to generate inclined proposals with text orientation angle information. The angle information is then adapted for bounding box regression to make the proposals more accurately fit into the text region in terms of the orientation. The Rotation Region-of-Interest (RRoI) pooling layer is proposed to project arbitrary-oriented proposals to a feature map for a text region classifier. The whole framework is built upon a regionproposal-based architecture, which ensures the computational efficiency of the arbitrary-oriented text detection compared with previous text detection systems. We conduct experiments using the rotation-based framework on three real-world scene text detection datasets and demonstrate its superiority in terms of effectiveness and efficiency over previous approaches.
In this paper, we study the task of 3D human pose estimation in the wild. This task is challenging due to lack of training data, as existing datasets are either in the wild images with 2D pose or in the lab images with 3D pose.We propose a weakly-supervised transfer learning method that uses mixed 2D and 3D labels in a unified deep neutral network that presents two-stage cascaded structure. Our network augments a state-of-the-art 2D pose estimation sub-network with a 3D depth regression sub-network. Unlike previous two stage approaches that train the two sub-networks sequentially and separately, our training is end-to-end and fully exploits the correlation between the 2D pose and depth estimation sub-tasks. The deep features are better learnt through shared representations. In doing so, the 3D pose labels in controlled lab environments are transferred to in the wild images. In addition, we introduce a 3D geometric constraint to regularize the 3D pose prediction, which is effective in the absence of ground truth depth labels. Our method achieves competitive results on both 2D and 3D benchmarks.
We present Deeply Supervised Object Detector (DSOD), a framework that can learn object detectors from scratch. State-of-the-art object objectors rely heavily on the offthe-shelf networks pre-trained on large-scale classification datasets like ImageNet, which incurs learning bias due to the difference on both the loss functions and the category distributions between classification and detection tasks. Model fine-tuning for the detection task could alleviate this bias to some extent but not fundamentally. Besides, transferring pre-trained models from classification to detection between discrepant domains is even more difficult (e.g. RGB to depth images). A better solution to tackle these two critical problems is to train object detectors from scratch, which motivates our proposed DSOD. Previous efforts in this direction mostly failed due to much more complicated loss functions and limited training data in object detection. In DSOD, we contribute a set of design principles for training object detectors from scratch. One of the key findings is that deep supervision, enabled by dense layer-wise connections, plays a critical role in learning a good detector. Combining with several other principles, we develop DSOD following the single-shot detection (SSD) framework. Experiments on PASCAL VOC 2007, 2012 and MS COCO datasets demonstrate that DSOD can achieve better results than the state-of-the-art solutions with much more compact models. For instance, DSOD outperforms SSD on all three benchmarks with real-time detection speed, while requires only 1/2 parameters to SSD and 1/10 parameters to Faster RCNN. Our code and models are available at: https://github.com/szq0214/DSOD.
Modern semantic segmentation frameworks usually combine low-level and high-level features from pre-trained backbone convolutional models to boost performance. In this paper, we first point out that a simple fusion of low-level and high-level features could be less effective because of the gap in semantic levels and spatial resolution. We find that introducing semantic information into low-level features and highresolution details into high-level features is more effective for the later fusion. Based on this observation, we propose a new framework, named ExFuse, to bridge the gap between low-level and high-level features thus significantly improve the segmentation quality by 4.0% in total. Furthermore, we evaluate our approach on the challenging PASCAL VOC 2012 segmentation benchmark and achieve 87.9% mean IoU, which outperforms the previous state-of-the-art results.
Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack methods for texts usually adopt heuristic replacement strategies on the character or word level, which remains challenging to find the optimal solution in the massive space of possible combinations of replacements while preserving semantic consistency and language fluency. In this paper, we propose BERT-Attack, a high-quality and effective method to generate adversarial samples using pre-trained masked language models exemplified by BERT. We turn BERT against its fine-tuned models and other deep neural models in downstream tasks so that we can successfully mislead the target models to predict incorrectly. Our method outperforms state-of-theart attack strategies in both success rate and perturb percentage, while the generated adversarial samples are fluent and semantically preserved. Also, the cost of calculation is low, thus possible for large-scale generations. The code is available at https://github.com/ LinyangLee/BERT-Attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.