Dupilumab-mediated inhibition of IL-4/IL-13 signaling through IL-4 receptor α blockade significantly and progressively improved disease activity, suppressed cellular/molecular cutaneous markers of inflammation and systemic measures of type 2 inflammation, and reversed AD-associated epidermal abnormalities.
Our data associate a shared T17/IL-23 immune fingerprint with the major orphan forms of ichthyosis and raise the possibility of IL-17-targeting strategies.
Background
The molecular signature of atopic dermatitis/AD lesions is associated with Th2 and Th22 activation, and epidermal alterations. However, the epidermal and dermal AD transcriptomes and their respective contributions to abnormalities in respective immune and barrier phenotypes are unknown.
Objective
To establish the genomic profile of the epidermal and dermal compartments of lesional/LS and non-lesional/NL AD, as compared with normal skin.
Methods
Laser capture micro-dissection/LCM was performed to separate epidermis and dermis of LS and NL skin from AD patients and normal skin from healthy volunteers followed by gene expression (microarrays and RT-PCR) and immunostaining studies.
Results
Our study identified novel immune and barrier genes, including the IL-34 cytokine and claudins 4 and 8, and showed increased detection of key AD genes usually undetectable on arrays (i.e. IL-22, TSLP, CCL22, and CCL26). Overall, the combined epidermal and dermal transcriptomes enlarged the AD transcriptome adding 674 up-regulated and 405 down-regulated differentially expressed genes between LS and NL skin to the AD transcriptome. We were also able to localize individual transcripts as primarily epidermal (DEFB4A) or dermal (IL-22, CTLA4, and CCR7), and link their expressions to possible cellular sources.
Conclusions
This is the first report that establishes robust epidermal and dermal genomic signatures of LS, NL AD and normal/N skin, as compared with whole tissues. These data establish the utility of LCM to separate different compartments and cellular subsets in AD, allowing localization of key barrier or immune molecules, and enable detection of gene products usually not detected on arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.