Infrared spectra of the neutral dimethylamine−methanol cluster, DMA− CH 3 OH, were measured in the spectral range of 2800−3900 cm −1 using an infraredvacuum ultraviolet (IR-VUV) scheme. Quantum chemical calculations and ab initio molecular dynamic (AIMD) simulations were carried out to understand the experimental spectral features. Experimental and theoretical results reveal the coexistence of N•••HO and O•••HN hydrogen-bonded structures. AIMD simulations show that the methyl group in methanol internally rotates around the N•••O axis, addressing the dynamic effect of the fluctuation of hydrogen bonds on the vibrational features. The bonding analysis was performed to elucidate the nature of the intermolecular interaction between DMA and CH 3 OH. The present work provides the fundamental understanding of hydrogen-bonding networks in the amine−alcohol complexes.
The structures, energetics, and infrared (IR) spectra of the cationic monomethylamine-water clusters, [(CH3NH2)(H2O)n]+ (n=1–5), have been studied using quantum chemical calculations at the MP2/6-311+G(2d,p) level. The results reveal that the formation of proton-transferred CH2NH3+ ion core structure is preferred via the intramolecular proton transfer from the methyl group to the nitrogen atom and the water molecules act as the acceptor for the O⋯HN hydrogen bonds with the positively charged NH3+ moiety of CH2NH3+, whose motif is retained in the larger clusters. The CH3NH2+ ion core structure is predicted to be less energetically favorable. Vibrational frequencies of CH stretches, hydrogen-bonded and free NH stretches, and hydrogen-bonded OH stretches in the calculated IR spectra of the CH2NH3+ and CH3NH2+ type structures are different from each other, which would afford the sensitive probes for fundamental understanding of hydrogen bonding networks generated from the radiation-induced chemical processes in the [(CH3NH2)(H2O)n]+ complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.