The phase-controlled synthesis of metallic and ambient-stable 2D MX 2 (M is Mo or W; X is S) with 1T octahedral coordination will endow these materials with superior performance compared with their semiconducting 2H coordination counterparts. We report a clean and facile route to prepare 1T-MoS 2 and 1T-WS 2 through hydrothermal processing under high magnetic fields. We reveal that the as-synthesized 1T-MoS 2 and 1T-WS 2 are ambient-stable for more than 1 year. Electrochemical measurements show that 1T-MoS 2 performs much better than 2H-MoS 2 as the anode for sodium ion batteries. These results can provide a clean and facile method to prepare ambientstable 1T-phase MX 2 .
The evolution of glucocorticoid drugs was driven by the demand of lowering the unwanted side effects, while keeping the beneficial anti-inflammatory effects. Potency is an important aspect of this evolution as many undesirable side effects are associated with use of high-dose glucocorticoids. The side effects can be minimized by highly potent glucocorticoids that achieve the same treatment effects at lower doses. This demand propelled the continuous development of synthetic glucocorticoids with increased potencies, but the structural basis of their potencies is poorly understood. To determine the mechanisms underlying potency, we solved the X-ray structures of the glucocorticoid receptor (GR) ligand-binding domain (LBD) bound to its endogenous ligand, cortisol, which has relatively low potency, and a highly potent synthetic glucocorticoid, mometasone furoate (MF). The cortisol-bound GR LBD revealed that the flexibility of the C1-C2 single bond in the steroid A ring is primarily responsible for the low affinity of cortisol to GR. In contrast, we demonstrate that the very high potency of MF is achieved by its C-17α furoate group completely filling the ligand-binding pocket, thus providing additional anchor contacts for high-affinity binding. A single amino acid in the ligand-binding pocket, Q642, plays a discriminating role in ligand potency between MF and cortisol. Structure-based design led to synthesis of several novel glucocorticoids with much improved potency and efficacy. Together, these results reveal key structural mechanisms of glucocorticoid potency and provide a rational basis for developing novel highly potent glucocorticoids.
From the main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we construct two volume-limited samples above and below the value of M * to explore the difference of the environmental dependence of galaxy properties between galaxies above and below the value of M * . We measure the local three-dimensional galaxy density in a comoving sphere with a radius of the distance to the fifth nearest galaxy for each galaxy, and compare basic properties of galaxies in the lowest density regime with those of galaxies in the densest regime. It is found that the galaxy luminosity strongly depend on local environments only for galaxies above M * , but this dependence is very weak for galaxies below M * . It is worth noting that g − r colour, concentration index ci and galaxy morphologies strongly depend on local environments for all galaxies with different luminosities. This shows that M * is a characteristic parameter only for the environmental dependence of galaxy luminosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.