Background: Whether or not the addition of 3D (three-dimension) printed models can enhance the teaching and learning environment for undergraduate students in regard to bone spatial anatomy is still unknown. In this study, we investigated the use of 3D printed models versus radiographic images as a technique for the education of medical students about bone spatial anatomy and fractures. Methods: The computed tomography (CT) data from four patients, each with a different fracture type (one spinal fracture, one pelvic fracture, one upper limb fracture, and one lower limb fracture), were obtained, and 3D models of the fractures were printed. A total of 90 medical students were enrolled in the study and randomly divided into two groups as follows: a traditional radiographic image group (presented by PowerPoint) and a 3D printed model group (combined PowerPoint and 3D models). Each student answered 5 questions about one type of fracture and completed a visual analog scale of satisfaction (0-10 points). Results: No significant differences were found in the upper limb or lower limb test scores between the 3D printed model group and the traditional radiographic image group; however, the scores on the pelvis and spine test for the traditional radiographic image group were significantly lower than the scores for the 3D printed model group (P=0.000). No significant differences were found in the test-taking times for the upper limb or lower limb (P=0.603 and P=0.746, respectively) between the two groups; however, the test-taking times for the pelvis and spine in the traditional radiographic image group were significantly longer than those of the 3D printed model group (P=0.000 and P=0.002, respectively). Conclusions: The 3D printed model may improve medical students' understanding of bone spatial anatomy and fractures in some anatomically complex sites.
BackgroundTo study the morphology of the human spine and new spinal fixation methods, scientists require cadaveric specimens, which are dependent on donation. However, in most countries, the number of people willing to donate their body is low. A 3D printed model could be an alternative method for morphology research, but the accuracy of the morphology of a 3D printed model has not been determined.MethodsForty-five computed tomography (CT) scans of cervical, thoracic and lumbar spines were obtained, and 44 parameters of the cervical spine, 120 parameters of the thoracic spine, and 50 parameters of the lumbar spine were measured. The CT scan data in DICOM format were imported into Mimics software v10.01 for 3D reconstruction, and the data were saved in .STL format and imported to Cura software. After a 3D digital model was formed, it was saved in Gcode format and exported to a 3D printer for printing. After the 3D printed models were obtained, the above-referenced parameters were measured again.ResultsPaired t-tests were used to determine the significance, set to P<0.05, of all parameter data from the radiographic images and 3D printed models. Furthermore, 88.6% of all parameters of the cervical spine, 90% of all parameters of the thoracic spine, and 94% of all parameters of the lumbar spine had Intraclass Correlation Coefficient (ICC) values >0.800. The other ICC values were <0.800 and >0.600; none were <0.600.ConclusionIn this study, we provide a protocol for printing accurate 3D spinal models for surgeons and researchers. The resulting 3D printed model is inexpensive and easily obtained for spinal fixation research.
Purpose To study the anatomic parameters related to clival screw and establish reference data concerning the craniovertebral fixation technique. Methods Morphometric measurement of the clivus and the surrounding anatomic structures were obtained on 41 dry bone specimens. Then, 2-D CT reconstruction of the craniovertebral region of 30 patients (19 men and 11 women, ranging in age from 20-64 years with an average age of 38.8 years) were performed to measure the safety range for a 3.5-mm screw placement. Nine entry points were evaluated. Finally, one male fresh cadaver specimen (age 46 years) was dissected to observe the craniovertebral region. Results The clivus faces the basilar artery, the V * XII cranial nerves, the pons, and ventral medulla oblongata at its intracranial surface. The longitudinal diameter of extracranial clivus was 25.87 ± 2.64 mm. The narrowest diameter of the clivus was 12.84 ± 1.08 mm, the distance between the left and right hypoglossal canal was 32.70 ± 2.09 mm at its widest part. The distance between the left and right structures, the maximum value was 49.31 ± 4.16 mm at carotid canal, the minimum value was 16.54 ± 2.04 mm at the occipital condyle. The measurement of clival screws placement simulation via 2-D CT reconstruction images shows the maximum upper insertion angle of three components the optimal entry points, the candidate points, the limit entry points was 130.19°, 125.23°and 85.72°, and the total mean screw length was 7.57, 10.13 and 15.6 mm at the vertical entry angle, respectively. Conclusions Clival screw placement is a viable option for craniovertebral fixation. There is a safe scope for the screw length and angle of the screw placement. And, these parameters obtained in the present study will be helpful for anyone contemplating the use of clival screw fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.