While immunosuppressive environments mediated by myeloid-derived suppressor cells (MDSCs) have been well documented in glioma patients, the mechanisms of MDSC development and activation have not been clearly defined. Here, we elucidated a role for glioma-derived exosomes (GDEs) in potentiating an MDSC pathway. We isolated normoxia-stimulated and hypoxia-stimulated GDEs and studied their MDSC induction abilities in vivo and in vitro. Analyses of spleen and bone marrow MDSC proportions (flow cytometry) and reactive oxygen species (ROS), arginase activity, nitric oxide (NO), T-cell proliferation and immunosuppressive cytokine (IL-10 and TGF-β, ELISA) levels were used to assess MDSC expansion and functional capacity. We also performed microRNA (miRNA) sequencing analysis of two types of GDEs to find miRNAs that potentially mediate the development and activation of MDSCs. GDE miRNA intracellular signaling in MDSCs was also studied. Hypoxia promoted the secretion of GDEs, and mouse MDSCs could uptake GDEs. Hypoxia-stimulated GDEs had a stronger ability to induce MDSCs than N-GDEs. The hypoxia-inducible expression of miR-10a and miR-21 in GDEs mediated GDE-induced MDSC expansion and activation by targeting RAR-related orphan receptor alpha (RORA) and phosphatase and tensin homolog (PTEN). Mice inoculated with miR-10a or miR-21 knockout glioma cells generated fewer MDSCs than those inoculated with normal glioma cells. These data elucidated a mechanism by which glioma cells influence the differentiation and activation of MDSCs via exosomes and demonstrated how local glioma hypoxia affects the entirety of tumor immune environments.
Cytosolic delivery
is the major challenge that limits the clinical
translation of siRNA-based therapeutics. Although thousands of polymers
have been developed for siRNA delivery, the efficiency–toxicity
correlation is unsatisfactory. Here, we report a facile strategy to
fabricate core–shell-structured nanoparticles with robust siRNA
delivery efficiency. The nanoparticle is prepared by entropy-driven
complexation of siRNA with a green tea catechin to yield a negatively
charged core, followed by coating low-molecular-weight polymers to
form the shell. This supramolecular strategy facilitates the polymers
condensing siRNA into uniform nanoparticles. The nanoparticle specifically
down-regulates target genes in vitro and in vivo, and efficiently attenuates chronic intestinal inflammation
in an inflammatory bowel disease model. Notably, the highly efficient
nanoparticles are applicable for various polymers with different topologies
and chemical compositions, providing a versatile technique to break
down the efficiency–toxicity correlation of cationic polymers.
The proposed strategy in this study permits the development of a promising
platform for polymer-mediated siRNA delivery.
Hypoxia induces protective autophagy in glioblastoma cells and new therapeutic avenues that target this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastomas in response to extensive hypoxia. Hypoxia also induces the upregulation of a specific set of proteins and microRNAs (miRNAs) in a variety of cell types. IL6 (interleukin 6), an inflammatory autocrine and paracrine cytokine that is overexpressed in glioblastoma, has been reported to be a biomarker for poor prognosis because of its tumor-promoting effects. Here, we describe a novel tumor-promoting mechanism of IL6, whereby hypoxia-induced IL6 acts as a potent initiator of autophagy in glioblastoma via the phosphorylated (p)-STAT3-MIR155-3p pathway. IL6 and p-STAT3 levels correlated with the abundance of autophagic cells and HIF1A levels in human glioma tissues and with the grade of human glioma, whereas inhibition of exogenous or endogenous IL6 repressed autophagy in glioblastoma cells in vitro. Knockdown of endogenous MIR155-3p inhibited IL6-induced autophagy, and enforced expression of MIR155-3p restored the anti-autophagic activity of IL6 inhibitors. We show that the hypoxia-IL6-p-STAT3-MIR155-3p-CREBRF-CREB3-ATG5 pathway plays a central role in malignant glioma progression, with blockade of the IL6 receptor by tocilizumab demonstrating a certain level of therapeutic efficacy in a xenograft model in vivo, especially in combination with temozolomide. Moreover, tocilizumab inhibits autophagy by promoting tumor apoptosis. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioma cell autophagy and point toward a possible efficacious adjuvant therapy for glioblastoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.