In cancer, T cells become dysfunctional owing to persistent antigen exposure. Dysfunctional T cells are characterized by reduced proliferative capacity, decreased effector function, and overexpression of multiple inhibitory receptors. Due to the presence of various inhibitory signals in the complex tumor microenvironment, tumor-specific T cells have distinct dysfunction states. Therapeutic reactivation of tumor-specific T cells has yielded good results in cancer patients. Here, we review the hallmarks of T cell dysfunction in cancer. Also, we discuss the relationship between T cell dysfunction and cancer immunotherapy.
PD-1/PD-L1 blockade therapy is a promising cancer treatment strategy, which has revolutionized the treatment landscape of malignancies. Over the last decade, PD-1/PD-L1 blockade therapy has been trialed in a broad range of malignancies and achieved clinical success. Despite the potentially cure-like survival benefit, only a minority of patients are estimated to experience a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might eventually lead to cancer progression in patients with clinical responses. Accordingly, the resistance to PD-1/PD-L1 blockade remains a significant challenge hindering its further application. To overcome the limitation in therapy resistance, substantial effort has been made to improve or develop novel anti-PD-1/PD-L1 based immunotherapy strategies with better clinical response and reduced immune-mediated toxicity. In this review, we provide an overview on the resistance to PD-1/PD-L1 blockade and briefly introduce the mechanisms underlying therapy resistance. Moreover, we summarize potential predictive factors for the resistance to PD-1/PD-L1 blockade. Furthermore, we give an insight into the possible solutions to improve efficacy and clinical response. In the following research, combined efforts of basic researchers and clinicians are required to address the limitation of therapy resistance.
We investigated the transcriptional mechanism underlying lung cancer development. RNA sequencing analysis was performed on blood samples from lung cancer cases and healthy controls. Differentially expressed microRNAs (miRNAs), circular RNAs (circRNAs), mRNAs (genes), and long non-coding RNAs (lncRNA) were identified, followed by pathway enrichment analysis. Based on miRNA target interactions, a competing endogenous network was established and significant nodes were screened. Differentially expressed transcriptional factors were retrieved from the TRRUST database and the transcriptional factor regulatory network was constructed. The expression of 59 miRNAs, 18,306 genes,232 lncRNAs, and 292 circRNAs were greatly altered in patients with lung cancer. miRNAs were closely associated with cancer-related pathways, such as pathways in cancer, colorectal cancer, and transcriptional misregulation in cancer. Two novel pathways, olfactory transduction and neuroactive ligand-receptor interactions, were significantly enriched by differentially expressed genes. The competing endogenous RNA network revealed 5 hub miRNAs. Hsa-miR-582-3p and hsa-miR-582-5p were greatly enriched in the Wnt signaling pathway. Hsa-miR-665 was closely related with the MAPK signaling pathway. Hsa-miR-582-3p and hsa-miR-582-5p were also present in the TF regulatory network. Transcriptional factors of WT1 (wilms tumor 1) and ETV1 (ETS variant 1) were regulated by hsa-miR-657 and hsa-miR-582-5p, respectively, and controlled androgen receptor gene expression. miR-582-5p, miRNA-582-3p, and miR-657 may play critical regulatory roles in lung tumor development. Our work may explore new mechanism of lung cancer and aid the development of novel therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.