The coronavirus disease 19 (COVID-19) pandemic has brought a great threat to global public health. Currently, mounting evidence has shown the occurrence of neurological symptoms in patients with COVID-19. However, the detailed mechanism by which the SARS-CoV-2 attacks the brain is not well characterized. Recent investigations have revealed that a cytokine storm contributes to brain inflammation and subsequently triggers neurological manifestations during the COVID-19 outbreak. Targeting brain inflammation may provide significant clues to the treatment of neurologic complications caused by SARS-CoV-2. Vascular growth factor (VEGF), which is widely distributed in the brain, probably plays a crucial role in brain inflammation via facilitating the recruitment of inflammatory cells and regulating the level of angiopoietins II (Ang II). Also, Ang II is considered as the products of SARS-CoV-2-attacking target, angiotensin-converting enzyme 2 (ACE2). Further investigation of the therapeutic potential and the underlying mechanisms of VEGF-targeted drugs on the neurological signs of COVID-19 are warranted. In any case, VEGF is deemed a promising therapeutic target in suppressing inflammation during SARS-CoV-2 infection with neurological symptoms.
PiT2 is a member of the inorganic phosphate transporter family, and is extensively expressed in the nervous system. It was found that loop7 domain of PiT2 is not required for retroviral recognition and transport function. The exact functions of loop7 remain poorly understood. Here we show that loop7 of PiT2 is necessary for the transport of PiT2 protein to the cell surface. Further, loop7 is also related to the outgrowth of neurite in Neuro2A cells interacts with the light chain 1 of microtubule-associated protein 1B (MAP1B). PiT2 with mutated MAP1B binding sites affect neurite outgrowth whereas Pi transport function deficient mutants of PiT2 do not. We also show that Drosophila dPiT interacts with microtubule-associated protein Futsch, and dPiT is crucial for the normal development of neuromuscular junctions (NMJs). These results indicate that PiT2 might participate in the regulation of neuronal outgrowth by interacting with MAP1B and independently of its Pi transport function in the nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.