In this study, gelatin was extracted from bighead carp (Hypophthalmichthys nobilis) scales by water bath (WB) and ultrasound bath (UB) at 60°C for 1 h, 3 h and 5 h, named WB1, WB3, WB5, UB1, UB3 and UB5, respectively. The physicochemical properties of gelatin were investigated. The result indicated that gelatin extracted from bighead carp scales had a high protein content (84.15~91.85 %) with moisture (7.111 3.65 %), low ash content (0.31~0.97 %). All extracted gelatin contained α-and β-chains as the predominant components. Gelatin extracted by UB obtained much higher yield (30.94-46.67 %) than that of WB (19.15-36.39 %). More voids and less sheets of gelatin structure were observed, when the gelatin was extracted by UB for longer time. Gelatin of UB-assisted extraction normally exhibited lower gel strength and melting points than that of WB, which may be resulted from the protein degradation reflected by the FTIR spectra and higher free amino group content. However, there was no significant difference between WB1 and UB1. Therefore, the ultrasound assisted extraction in a short time was a promising method to enhance the yield and obtain gelatin with high quality.
The glycation extent of bovine serum albumin (BSA) before and after ultrasonication was evaluated by MALDI-TOF and Orbitrap mass spectrometry. Ultrasonic pretreatment significantly improved the incorporation of galactose to BSA. Prior to ultrasonic pretreatment, only 12 sites (11 lysines and 1 arginine) were glycated, whereas the number of glycation sites was increased to 42, including 39 lysines and 3 arginines, after treatment. Average degree of substitution per peptide molecule of BSA (DSP) was used to evaluate the glycation level for each glycation site. The ultrasonic pretreatment significantly improved the DSP value of all glycation sites. The prevalently promoted glycation by ultrasonic pretreatment suggests that ultrasonication improves glycation through altering the structure of BSA throughout all three domains. An ultrahigh-resolution linear ion trap Orbitrap mass spectrometer facilitates unambiguous localization of glycation sites, allowing an in-depth analysis of the nature and extent of protein glycation at the molecular level. High-intensity ultrasonication can greatly improve protein glycation and, therefore, opens new routes to modify the functionality of proteins in a positive way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.