MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1+ cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.
BackgroundAptamer-based tumor targeted drug delivery system is a promising approach that may increase the efficacy of chemotherapy and reduce the related toxicity. HER2 protein is an attractive target for tumor-specific drug delivery because of its overexpression in multiple malignancies, including breast, gastric, ovarian, and lung cancers.MethodsIn this paper, we developed a new HER2 aptamer (HB5) by using systematic evolution of ligands by exponential enrichment technology (SELEX) and exploited its role as a targeting ligand for delivering doxorubicin (Dox) to breast cancer cells in vitro.ResultsThe selected aptamer was an 86-nucleotide DNA molecule that bound to an epitope peptide of HER2 with a Kd of 18.9 nM. The aptamer also bound to the extracellular domain (ECD) of HER2 protein with a Kdof 316 nM, and had minimal cross reactivity to albumin or trypsin. In addition, the aptamer was found to preferentially bind to HER2-positive but not HER2-negative breast cancer cells. An aptamer-doxorubicin complex (Apt-Dox) was formulated by intercalating Dox into the DNA structure of HB5. The Apt-Dox complex could selectively deliver Dox to HER2-positive breast cancer cells while reducing the drug intake by HER2-negative cells in vitro. Moreover, Apt-Dox retained the cytotoxicity of Dox against HER2-positive breast cancer cells, but reduced the cytotoxicity to HER2-negative cells.ConclusionsThe results suggest that the selected HER2 aptamer may have application potentials in targeted therapy against HER2-positive breast cancer cells.
Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by the adverse effects of cytotoxic agents. Targeted drug delivery may reduce the non-specific toxicity of chemotherapy by selectively directing anticancer drugs to tumor cells. MUC1 protein is an attractive target for tumor-specific drug delivery owning to its overexpression in most adenocarcinomas. In this study, a novel MUC1 aptamer is exploited as the targeting ligand for carrying doxorubicin (Dox) to cancer cells. We developed an 86-base DNA aptamer (MA3) that bound to a peptide epitope of MUC1 with a K d of 38.3 nM and minimal cross reactivity to albumin. Using A549 lung cancer and MCF-7 breast cancer cells as MUC1-expressing models, MA3 was found to preferentially bind to MUC1-positive but not MUC1-negative cells. An aptamer-doxorubicin complex (Apt-Dox) was formulated by intercalating doxorubicin into the DNA structure of MA3. Apt-Dox was found capable of carrying doxorubicin into MUC1-positive tumor cells, while significantly reducing the drug intake by MUC1-negative cells. Moreover, Apt-Dox retained the efficacy of doxorubicin against MUC1-positive tumor cells, but lowered the toxicity to MUC1-negative cells (P<0.01). The results suggest that the MUC1 aptamer may have potential utility as a targeting ligand for selective delivery of cytotoxic agent to MUC1-expressing tumors.
Multidrug resistance (MDR) is a major impediment to cancer treatment. A promising strategy for treating MDR is the joint delivery of combined anticancer agents to tumor cells in a single nanocarrier. Here, for the first time, Resveratrol (Res) was co-encapsulated with paclitaxel (PTX) in a PEGylated liposome to construct a carrier-delivered form of combination therapy for drug-resistant tumors. The composite liposome had an average diameter of 50 nm with encapsulated efficiencies of above 50%. The studies demonstrated that the composite liposome could generate potent cytotoxicity against the drug-resistant MCF-7/Adr tumor cells in vitro and enhance the bioavailability and the tumor-retention of the drugs in vivo. Moreover, systemic therapy with the composite liposome effectively inhibited drug-resistant tumor in mice (p < 0.01), without any notable increase in the toxicity. These results suggested that the co-delivery of Res and a cytotoxic agent in a nanocarrier may potentially improve the treatment of drug-resistant tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.