Renal cell carcinoma (RCC) associated with Xp11.2 translocation is uncommon, characterized by several different translocations involving the TFE3 gene. We assessed the utility of break-apart fluorescence in situ hybridization (FISH) in establishing the diagnosis for suspected or unclassified cases with negative or equivocal TFE3 immunostaining by analyzing 24 renal cancers with break-apart TFE3 FISH and comparing the molecular findings with the results of TFE3 and cathepsin K immunostaining in the same tumors. Ten tumors were originally diagnosed as Xp11.2 RCC on the basis of positive TFE3 immunostaining, and 14 were originally considered unclassified RCCs with negative or equivocal TFE3 staining, but with a range of features suspicious for Xp11.2 RCC. Seventeen cases showed TFE3 rearrangement associated with Xp11.2 translocation by FISH, including all 13 tumors with moderate or strong TFE3 (n=10) or cathepsin K (n=7) immunoreactivity. FISH-positive cases showed negative or equivocal immunoreactivity for TFE3 or cathepsin K in 7 and 10 tumors, respectively (both=3). None had positive immunohistochemistry but negative FISH. Morphologic features were typical for Xp11.2 RCC in 10/17 tumors. Unusual features included 1 melanotic Xp11.2 renal cancer, 1 tumor with mixed features of Xp11.2 RCC and clear cell RCC, and other tumors mimicking clear cell RCC, multilocular cystic RCC, or high-grade urothelial carcinoma. Morphology mimicking high-grade urothelial carcinoma has not been previously reported in these tumors. Psammoma bodies, hyalinized stroma, and intracellular pigment were preferentially identified in FISH-positive cases compared with FISH-negative cases. Our results support the clinical application of a TFE3 break-apart FISH assay for diagnosis and confirmation of Xp11.2 RCC and further expand the histopathologic spectrum of these neoplasms to include tumors with unusual features. A renal tumor with pathologic or clinical features highly suggestive of translocation-associated RCC but exhibiting negative or equivocal TFE3 immunostaining should be evaluated by TFE3 FISH assay to fully assess this possibility.
PD-1/PD-L1 blockade therapy is a promising cancer treatment strategy, which has revolutionized the treatment landscape of malignancies. Over the last decade, PD-1/PD-L1 blockade therapy has been trialed in a broad range of malignancies and achieved clinical success. Despite the potentially cure-like survival benefit, only a minority of patients are estimated to experience a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might eventually lead to cancer progression in patients with clinical responses. Accordingly, the resistance to PD-1/PD-L1 blockade remains a significant challenge hindering its further application. To overcome the limitation in therapy resistance, substantial effort has been made to improve or develop novel anti-PD-1/PD-L1 based immunotherapy strategies with better clinical response and reduced immune-mediated toxicity. In this review, we provide an overview on the resistance to PD-1/PD-L1 blockade and briefly introduce the mechanisms underlying therapy resistance. Moreover, we summarize potential predictive factors for the resistance to PD-1/PD-L1 blockade. Furthermore, we give an insight into the possible solutions to improve efficacy and clinical response. In the following research, combined efforts of basic researchers and clinicians are required to address the limitation of therapy resistance.
Glandular neoplasms involving the urinary bladder carry a challenging differential diagnosis including primary and secondary processes. We investigated the potential diagnostic utility of cadherin-17 and GATA3 in 25 primary adenocarcinomas of the urinary bladder, as compared with other commonly used markers including b-catenin and p63. Urothelial carcinoma with glandular differentiation (11), colorectal adenocarcinoma secondarily involving the bladder (25), and primary colorectal adenocarcinoma (22) were also analyzed and the results were compared using a Fisher exact test. Cadherin-17 was expressed in 23/25 primary bladder adenocarcinomas (92%), 23/25 colorectal adenocarcinomas involving the bladder (92%), 21/22 primary colorectal adenocarcinomas (95%) and entirely negative (0/11) in both components of urothelial carcinoma with glandular differentiation (Po0.001). In urothelial carcinoma with glandular differentiation, positive nuclear staining for GATA3 was evident in the urothelial component for 18% (2/11) and the glandular component for 9% (1/11) with additional tumors showing only cytoplasmic staining. Nuclear reactivity for GATA3 was not present in primary bladder adenocarcinoma and primary/secondary colorectal adenocarcinoma (Po0.05). Positive nuclear and cytoplasmic immunostaining for b-catenin was evident in 21/22 primary colorectal adenocarcinomas (95%) and 23/25 cases of secondary involvement by colorectal adenocarcinoma (92%). In contrast, positive membranous and cytoplasmic staining for b-catenin was observed in 23/25 primary bladder adenocarcinomas (92%) and 11/11 urothelial carcinomas with glandular differentiation (100%, Po0.001). p63 was expressed only in the urothelial component of urothelial carcinoma with glandular differentiation and not in the glandular component (Po0.001). In summary, cadherin-17 is a relatively specific and sensitive marker for primary adenocarcinoma of the urinary bladder, distinguishing it from urothelial carcinoma with glandular differentiation. However, it does not distinguish primary bladder adenocarcinoma from secondary involvement by colorectal adenocarcinoma. The pattern of reactivity for b-catenin remains the most useful marker for distinguishing these two tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.