Cancer-associated fibroblasts (CAFs) provide critical metabolites for tumor growth and undergo metabolic reprogramming to support glycolysis. However, the molecular mechanisms responsible for this change remain unclear. Here, we report that TGF-β1- or PDGF-induced CAFs switch from oxidative phosphorylation to aerobic glycolysis. We identify downregulation of isocitrate dehydrogenase 3α (IDH3α) as a marker for this switch. Furthermore, miR-424 downregulates IDH3α during CAF formation. Downregulation of IDH3α decreases the effective level of α-ketoglutarate (α-KG) by reducing the ratio of α-KG to fumarate and succinate, resulting in PHD2 inhibition and HIF-1α protein stabilization. The accumulation of HIF-1α, in turn, promotes glycolysis by increasing the uptake of glucose, upregulating expression of glycolytic enzymes under normoxic conditions, and inhibiting oxidative phosphorylation by upregulating NDUFA4L2. CAFs from tumor samples exhibit low levels of IDH3α, and overexpression of IDH3α prevents transformation of fibroblasts into CAFs. Our studies reveal IDH3α to be a critical metabolic switch in CAFs.
How TGF-β1-mediated signaling pathways are finely tuned to orchestrate the generation of carcinoma-associated fibroblasts (CAFs) is poorly understood. Here, we demonstrate that miR-21 and the signaling of its target Smad 7 determine TGF-β1-induced CAF formation. In primary cultured fibroblasts, mature miR-21 increases after TGF-β1 treatment, whereas the Smad 7 protein level decreases. MiR-21 binds to the 3′ UTR of Smad7 mRNA and inhibits its translation, rather than causing its degradation. Most importantly, Smad 7 is bound to Smad 2 and 3, which are thought to competitively bind to TGFBR1, and prevents their activation upon TGF-β1 stimulation. The depletion of miR-21 or the overexpression of Smad 7 blocks TGF-β1-induced CAF formation, whereas the overexpression of miR-21 or the depletion of Smad 7 promotes CAF formation, even without TGF-β1 stimulation. Collectively, these findings clearly demonstrate that miR-21 and Smad7 are critical regulators of TGF-β1 signaling during the induction of CAF formation.
Mutations and altered expression of deubiquitinating enzymes (DUBs) have been found associated with many human diseases including cancers. In this study, Ubiquitin specific protease 1 (USP1) expression was found significantly increased in some colorectal cancers (CRC). The elevated USP1 level was associated with short overall survival of patients and with advanced stages of cancers. In cultured CRC cells, knockdown of USP1 induced growth arrest at G 2 /M of cell cycle and reduced the expression of anti-apoptotic proteins Bcl-2 and Mcl-1. Its knockdown also led to reduction of DNA-repair related substrates FANCD2 and ID1. Further investigations found that small molecular inhibitor of USP1 ML323 sensitized CRC cells to DNA-targeting chemotherapeutics, including doxorubicin, TOPI/II inhibitors, and PARP inhibitor, but not to 5-Fu. These results indicate that USP1 plays a critical in colorectal cancer cell survival and is a promising target for anti-colorectal cancer chemotherapy. Targeting USP1 may represent an effective strategy to regulate the DNA-repairing system.
Ubiquitin specific peptidase 5 (USP5) is a ubiquitous expressed deubiquitinating enzyme (DUB). It has been shown involved in DNA repair, apoptosis, inflammation, and tumor cell growth. However, the function and molecular mechanism of USP5 in colorectal cancer (CRC) are still unclear. In the present study, we asked how it affected the growth of colorectal cancer cells. Methods : A shRNA-based high-content screening was performed to identify DUBs affecting the growth of CRC cells. CCK-8 assay and xenografts were used to assess CRC cell growth, survival and tumorigenesis. RT-qPCR, immunoblotting and immunohistochemistry were carried out to quantitate USP5 expression in CRC tissues and cell lines. Immunoprecipitation and mass spectrometry analysis were performed to identify USP5-interacting proteins. Cycloheximide chase was performed to assess Tu translation elongation factor (TUFM) stability. Dual luciferase reporter assay was utilized for USP5 promoter analysis. Results : We found that USP5 was highly expressed in a group of primary CRC tissues, and the increased USP5 was correlated with clinical stages and shorter overall survival. While USP5 knockdown effectively inhibited CRC cell growth, ove r expressed USP5 promoted the growth of CRC cells and made them more resistant to doxorubicin (DOX). TUFM was discovered as a substrate of USP5. USP5 deubiquitinated TUFM and increased its level in CRC cells. Enforced expression of TUFM was able to alleviate the growth inhibition induced by USP5 knockdown. Further analyses showed that EBF transcription factor 1 (EBF1) was a major regulator for USP5 transcription, and DOX inhibited EBF1-USP5-TUFM axis in CRC cells. Conclusions : USP5 was required for CRC cells and promoted their growth and resistance to chemotherapeutics. TUFM was a USP5 deubiquitinating substrate that mediated the cellular effects of USP5. The transcription of USP5 was regulated by EBF1. Thus, targeting EBF1-USP5-TUFM axis is a potential novel strategy for CRC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.