Single noble metal atoms and ultrafine metal clusters catalysts tend to sinter into aggregated particles at elevated temperatures, driven by the decrease of metal surface free energy. Herein, we report an unexpected phenomenon that noble metal nanoparticles (Pd, Pt, Au-NPs) can be transformed to thermally stable single atoms (Pd, Pt, Au-SAs) above 900 °C in an inert atmosphere. The atomic dispersion of metal single atoms was confirmed by aberration-corrected scanning transmission electron microscopy and X-ray absorption fine structures. The dynamic process was recorded by in situ environmental transmission electron microscopy, which showed competing sintering and atomization processes during NP-to-SA conversion. Further, density functional theory calculations revealed that high-temperature NP-to-SA conversion was driven by the formation of the more thermodynamically stable Pd-N structure when mobile Pd atoms were captured on the defects of nitrogen-doped carbon. The thermally stable single atoms (Pd-SAs) exhibited even better activity and selectivity than nanoparticles (Pd-NPs) for semi-hydrogenation of acetylene.
To date, ionic conducting hydrogel attracts tremendous attention as an alternative to the conventional rigid metallic conductors in fabricating flexible devices, owing to their intrinsic characteristics. However, simultaneous realization of high stiffness, toughness, ionic conductivity, and freezing tolerance through a simple approach is still a challenge. Here, a novel highly stretchable (up to 660%), strong (up to 2.1 MPa), tough (5.25 MJ m−3), and transparent (up to 90%) ionic conductive (3.2 S m−1) organohydrogel is facilely fabricated, through sol–gel transition of polyvinyl alcohol and cellulose nanofibrils (CNFs) in dimethyl sulfoxide‐water solvent system. The ionic conductive organohydrogel presents superior freezing tolerance, remaining flexible and conductive (1.1 S m−1) even at −70 °C, as compared to the other reported anti‐freezing ionic conductive (organo)hydrogel. Notably, this material design demonstrates synergistic effect of CNFs in boosting both mechanical properties and ionic conductivity, tackling a long‐standing dilemma among strength, toughness, and ionic conductivity for the ionic conducting hydrogel. In addition, the organohydrogel displays high sensitivity toward both tensile and compressive deformation and based on which multi‐functional sensors are assembled to detect human body movement with high sensitivity, stability, and durability. This novel organohydrogel is envisioned to function as a versatile platform for multi‐functional sensors in the future.
Alloy design based on single–principal-element systems has approached its limit for performance enhancements. A substantial increase in strength up to gigapascal levels typically causes the premature failure of materials with reduced ductility. Here, we report a strategy to break this trade-off by controllably introducing high-density ductile multicomponent intermetallic nanoparticles (MCINPs) in complex alloy systems. Distinct from the intermetallic-induced embrittlement under conventional wisdom, such MCINP-strengthened alloys exhibit superior strengths of 1.5 gigapascals and ductility as high as 50% in tension at ambient temperature. The plastic instability, a major concern for high-strength materials, can be completely eliminated by generating a distinctive multistage work-hardening behavior, resulting from pronounced dislocation activities and deformation-induced microbands. This MCINP strategy offers a paradigm to develop next-generation materials for structural applications.
Disorder-induced electron localization and metal-insulator transitions (MITs) have been a very active research field starting from the seminal paper by Anderson half a century ago. However, pure Anderson insulators are very difficult to identify due to ubiquitous electron-correlation effects. Recently, an MIT has been observed in electrical transport measurements on the crystalline state of phase-change GeSbTe compounds, which appears to be exclusively disorder driven. Subsequent density functional theory simulations have identified vacancy disorder to localize electrons at the Fermi level. Here, we report a direct atomic scale chemical identification experiment on the rocksalt structure obtained upon crystallization of amorphous Ge2Sb2Te5. Our results confirm the two-sublattice structure resolving the distribution of chemical species and demonstrate the existence of atomic disorder on the Ge/Sb/vacancy sublattice. Moreover, we identify a gradual vacancy ordering process upon further annealing. These findings not only provide a structural underpinning of the observed Anderson localization but also have implications for the development of novel multi-level data storage within the crystalline phases.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.