Dissimilatory nitrate reduction processes, including denitrification, anaerobic ammonium oxidation (ANAMMOX), and dissimilatory nitrate reduction to ammonium (DNRA), play an important role in controlling the nitrate dynamics and fate in estuarine and coastal environments. We investigated potential rates of denitrification, ANAMMOX, and DNRA in the sediments of the Yangtze Estuary via slurry incubation experiments combined with isotope-tracing techniques to reveal their respective contributions to total nitrate reduction in this hypereutrophic estuarine ecosystem. Measured rates of denitrification, ANAMMOX, and DNRA ranged from 0.06 to 4.51 μmol N kg À1 h À1, 0.01 to 0.52 μmol N kg À1 h À1, and 0.03 to 0.89 μmol N kg À1 h À1, respectively. These potential dissimilatory nitrate reduction process rates correlated significantly with salinity, sulfide, organic carbon, and nitrogen. Denitrification contributed 38-96% total nitrate reduction in the Yangtze Estuary, as compared to 3-45% for DNRA and 1-36% for ANAMMOX. In total, the denitrification and ANAMMOX processes removed approximately 25% of the external inorganic nitrogen transported annually into the estuary. In contrast, most external inorganic nitrogen was retained in the estuary and contributes substantially to the severe eutrophication of the Yangtze Estuary.
This study investigated net anthropogenic nitrogen inputs (NANI, including atmospheric nitrogen deposition, nitrogenous fertilizer use, net nitrogen import in food and feed, and agricultural nitrogen fixation) and the associated relationship with riverine dissolved inorganic nitrogen (DIN) export in the Yangtze River basin during the 1980–2012 period. The total NANI in the Yangtze River basin has increased by more than twofold over the past three decades (3537.0 ± 615.3 to 8176.6 ± 1442.1 kg N km−2 yr−1). The application of chemical fertilizer was the largest component of NANI in the basin (51.1%), followed by net nitrogen import in food and feed (26.0%), atmospheric nitrogen deposition (13.2%), and agricultural nitrogen fixation (9.7%). A regression analysis showed that the riverine DIN export was strongly correlated with NANI and the annual water discharge (R2 = 0.90, p < 0.01). NANI in the Yangtze River basin was estimated to contribute 37–66% to the riverine DIN export. We also forecasted future variations in NANI and riverine DIN export for the years 2013 to 2030, based on possible future changes in human activities and the climate. This work provides a quantitative understanding of NANI in the Yangtze River basin and its effects on riverine DIN export and helps to develop integrated watershed nitrogen management strategies.
Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems.
Denitrification plays a critical role in nitrogen removal in estuarine and coastal ecosystems. In this study, the community composition, diversity, abundance, and distribution of cytochrome cd1-type nitrite reductase gene (nirS)-harboring denitrifiers in intertidal sediments of the Yangtze Estuary were analyzed using polymerase chain reaction (PCR)-based clone libraries and quantitative PCR techniques. Clone library analysis showed that the nirS-encoding bacterial biodiversity was significantly higher at the lower salinity sites than at the higher salinity sites. However, there was no significant seasonal difference in the nirS gene diversity between summer and winter. Phylogenetic analysis revealed that the nirS-harboring denitrifier communities at the study area had distinctive spatial heterogeneity along the estuary. At the lower salinity sites, the nirS-harboring bacterial community was co-dominated by clusters III and VII; while at the higher salinity sites, it was dominated by cluster I. Canonical correspondence analysis indicated that the community compositions of nirS-type denitrifiers were significantly correlated with salinity, ammonium, and nitrate. Quantitative PCR results showed that the nirS gene abundance was in the range of 1.01 × 10(6) to 9.00 × 10(7) copies per gram dry sediment, without significant seasonal variation. Among all the environmental factors, the nirS gene abundance was only significantly related to the change of salinity. These results can extend our current knowledge about the composition and dynamics of denitrification microbial community in the estuarine ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.