Background-The development of atrium-selective antiarrhythmic agents is a current strategy for inhibiting atrial fibrillation (AF). The present study investigated whether the natural flavone acacetin from the traditional Chinese medicine Xuelianhua would be an atrium-selective anti-AF agent. Methods and Results-The effects of acacetin on human atrial ultrarapid delayed rectifier K ϩ current (I Kur ) and other cardiac ionic currents were studied with a whole-cell patch technique. Acacetin suppressed I Kur and the transient outward K ϩ current (IC 50 3.2 and 9.2 mol/L, respectively) and prolonged action potential duration in human atrial myocytes. The compound blocked the acetylcholine-activated K ϩ current; however, it had no effect on the Na ϩ current, L-type Ca 2ϩ current, or inward-rectifier K ϩ current in guinea pig cardiac myocytes. Although acacetin caused a weak reduction in the hERG and hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells, it did not prolong the corrected QT interval in rabbit hearts. In anesthetized dogs, acacetin (5 mg/kg) prolonged the atrial effective refractory period in both the right and left atria 1 to 4 hours after intraduodenal administration without prolongation of the corrected QT interval, whereas sotalol at 5 mg/kg prolonged both the atrial effective refractory period and the corrected QT interval. Acacetin prevented AF induction at doses of 2.5 mg/kg (50%), 5 mg/kg (85.7%), and 10 mg/kg (85.7%). Sotalol 5 mg/kg also prevented AF induction (60%). Conclusions-The present study demonstrates that the natural compound acacetin is an atrium-selective agent that prolongs the atrial effective refractory period without prolonging the corrected QT interval and effectively prevents AF in anesthetized dogs after intraduodenal administration. These results indicate that oral acacetin is a promising atrium-selective agent for the treatment of AF.
BackgroundDysregulated miR-7 and aberrant NF-κB activation were reported in various human cancers. However, the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in human gastric cancers (GC) metastasis remain largely unknown. This study is to investigate the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in GC and to explore the potential therapeutic effect of miR-7 to GC distant metastasis.MethodsTCGA STAD and NCBI GEO database were used to investigate the expression profile of miR-7 and NF-κB RelA/p65 and clinical relevance. Lentivirus-mediated gene delivery was applied to explore the therapeutic effect of miR-7 in GC. Real-time PCR, FACS, IHC, IF, reporter gene assay, IP, pre-miRNA-7 processing and binding assays were performed.ResultsLow miR-7 correlated with high RelA/p65 in GC with a clinical relevance that low miR-7 and high RelA/p65 as prognostic indicators of poor survival outcome of GC patients. Moreover, an impaired pre-miR-7 processing caused by dysregulated Dicer1 expression is associated with downregulated miR-7 in GC cells. Functionally, delivery of miR-7 displays therapeutic effects to GC lung and liver metastasis by alleviating hemangiogenesis, lymphangiogenesis as well as inflammation cells infiltration. Mechanistically, miR-7 suppresses NF-κB transcriptional activity and its downstream metastasis-related molecules Vimentin, ICAM-1, VCAM-1, MMP-2, MMP-9 and VEGF by reducing p65 and p-p65-ser536 expression. Pharmacologic prevention of NF-κB activator LPS obviously restored miR-7-suppressed NF-κB transcriptional activation and significantly reverted miR-7-inhibited cell migration and invasion.ConclusionsOur data suggest loss of miR-7 in GC promotes p65-mediated aberrant NF-κB activation, facilitating GC metastasis and ultimately resulting in the worse clinical outcome. Thus, miR-7 may act as novel prognostic biomarker and potential therapeutic target for aberrant NF-κB-driven GC distant metastasis.Electronic supplementary materialThe online version of this article (10.1186/s13046-019-1074-6) contains supplementary material, which is available to authorized users.
Recently, microRNA-99 family members, such as miR-99a/b and miR-100, have been reported to exhibit abnormal expression in various malignant tumors, but their functions in carcinomas are controversial. In this study, we focused on miR-99a and miR-100, which were determined to be universally downregulated in esophageal squamous cell carcinoma, and investigated their functions and potential mechanisms of action. The downregulation of miR-99a/100 was validated by qRT-PCR in 101 ESCC surgical tissue samples and in 3 ESCC cell lines. The overexpression of miR-99a and miR-100 via the transient transfection of the corresponding precursor molecules inhibited cell proliferation by inducing apoptosis in the ESCC cell lines. To investigate the molecular mechanism of miR-99a/100-induced apoptosis, luciferase reporter assays and Western blots were performed to demonstrate that the overexpression of miR-99a/100 suppressed the expression of mTOR by directly targeting its 3'UTR in a post-transcriptional manner. Clinically, the decreased expression of miR-99a/100 was associated with worse overall survival in ESCC patients. In conclusion, these results indicated that miR-99a and miR-100 inhibited cell proliferation by suppressing mTOR in ESCC cell lines, and therefore, the miR-99a/100-mTOR signaling pathway is a potential therapeutic target for inducing apoptosis to combat ESCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.