Here we report the application of a conjugated copolymer based on thiophene and quinoxaline units, namely poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-altthiophene-2,5-diyl] (TQ1), to nanoparticle organic photovoltaics (NP-OPVs). TQ1 exhibits more desirable material properties for NP-OPV fabrication and operation, particularly a high glass transition temperature (T g) and amorphous nature, compared to the commonly applied semicrystalline polymer poly(3-hexylthiophene) (P3HT). This study reports the optimisation of TQ1:PC 71 BM (phenyl C 71 butyric acid methyl ester) NP-OPV device performance by the application of mild thermal annealing treatments in the range of the T g (sub-T g and post-T g), both in the active layer drying stages and post-cathode deposition annealing stages of device fabrication, and an in-depth study of the effect of these treatments on nanoparticle film morphology. In addition, we report a type of morphological evolution in nanoparticle films for OPV active layers that has not previously been observed, that of PC 71 BM nano-pathway formation between dispersed PC 71 BM-rich nanoparticle cores, which have the benefit of making the bulk film more conducive to charge percolation and extraction.
Structure and morphology play a critical role in determining the performance of organic photovoltaic devices. In this paper, variation of the postannealing cooling rate is used to create a series of “snapshots” of the vertical and interfacial reorganization processes that occur upon annealing. The data show that slower cooling rates result in significantly enhanced device efficiencies primarily driven by increased short circuit current and fill factor. UV−vis spectroscopy, X-ray diffraction (XRD), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), atomic force microscopy (AFM), and contact angle measurements are used to probe the origin of these improvements. Our results show evidence for a distinct and changing vertical stratification and interfacial structure in the device throughout the annealing process, with both composition and crystallinity varying through the active layer. The implications of these changes are discussed in terms of device properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.