Shp-2, a widely expressed cytoplasmic tyrosine phosphatase with two SH2 domains, is believed to participate in signal relay downstream of growth factor receptors. We show here that this phosphatase also plays an important role in the control of cell spreading, migration, and cytoskeletal architecture. Fibroblast cells lacking a functional Shp-2 were impaired in their ability to spread and migrate on fibronectin compared with wild-type cells. Furthermore, Shp-2 mutant cells displayed an increased number of focal adhesions and condensed F-actin aggregation at the cell periphery, properties reminiscent of focal adhesion kinase (FAK)-deficient cells. This is consistent with our previous observations in vivo that mice homozygous for the Shp-2 mutation died at midgestation with similar phenotype to FAK and fibronectin-deficient embryos, having severe defects in mesodermal patterning, particularly the truncation of posterior structures. Biochemical analysis demonstrated that FAK dephosphorylation was significantly reduced in Shp-2 mutant cells in suspension. Furthermore, regulated association of Src SH2 domain with FAK and paxillin during cell attachment and detachment on fibronectin was disrupted in Shp-2 mutant cells. This report defines a unique role of the Shp-2 tyrosine phosphatase in cell motility, which might guide the design of a new strategy for pharmaceutical interference of tumor metastasis.
Gut-derived bacterial lipopolysaccharide (LPS) and subsequent hepatic toll-like receptor 4 (TLR4) activation have been recognized to be involved in the onset of diet-induced nonalcoholic fatty liver disease (NAFLD), but little is known about the variation of LPS and TLR4 during the progression of NAFLD. Probiotics were able to inhibit proliferation of harmful bacteria and improve gastrointestinal barrier function. However, it’s unclear whether LPS/TLR4 is involved in the protection effect of probiotics on NAFLD. In this study, we described characteristic of gut microbiota structure in the progression of NAFLD, and we also analyzed the relationship between gut microbiota and LPS/TLR4 in this process. Furthermore, we applied probiotics intervention to investigate the effect of probiotics on gut flora structure, intestinal integrity, serum LPS, liver TLR4 and liver pathology. Our results showed that serum LPS and liver TLR4 were highly increased during progression of NAFLD, with gut flora diversity and gut mircobiological colonization resistance (B/E) declining. Furthermore, probiotics could improve gut microbiota structure and liver pathology. Probiotics could also downregulate serum LPS and liver TLR4. Our results suggested that both gut flora alteration and endotoxemia may be involved in the progression of NAFLD. Probiotics may delay the progression of NAFLD via LPS/TLR4 signaling.
We set out to investigate the interference factors that led to false-positive novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgM detection results using gold immunochromatography assay (GICA) and enzyme-linked immunosorbent assay (ELISA) and the corresponding solutions. GICA and ELISA were used to detect SARS-CoV-2 IgM in 86 serum samples, including 5 influenza A virus (Flu A) IgM-positive sera, 5 influenza B virus (Flu B) IgM-positive sera, 5 Mycoplasma pneumoniae IgM-positive sera, 5 Legionella pneumophila IgM-positive sera, 6 sera of HIV infection patients, 36 rheumatoid factor IgM (RF-IgM)-positive sera, 5 sera from hypertensive patients, 5 sera from diabetes mellitus patients, and 14 sera from novel coronavirus infection disease 19 (COVID-19) patients. The interference factors causing false-positive reactivity with the two methods were analyzed, and the urea dissociation test was employed to dissociate the SARS-CoV-2 IgM-positive serum using the best dissociation concentration. The two methods detected positive SARS-CoV-2 IgM in 22 mid-to-high-level-RF-IgM-positive sera and 14 sera from COVID-19 patients; the other 50 sera were negative. At a urea dissociation concentration of 6 mol/liter, SARS-CoV-2 IgM results were positive in 1 mid-to-high-level-RF-IgM-positive serum and in 14 COVID-19 patient sera detected using GICA. At a urea dissociation concentration of 4 mol/liter and with affinity index (AI) levels lower than 0.371 set to negative, SARS-CoV-2 IgM results were positive in 3 mid-to-high-level-RF-IgM-positive sera and in 14 COVID-19 patient sera detected using ELISA. The presence of RF-IgM at mid-to-high levels could lead to false-positive reactivity of SARS-CoV-2 IgM detected using GICA and ELISA, and urea dissociation tests would be helpful in reducing SARS-CoV-2 IgM false-positive results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.