In this work, the (Ag,Cu) 2 ZnSnS 4 (ACZTS) thin films were fabricated via sputtering with a multi-target to form different layer stacks, i.e., (S1) ZnS/Sn/ Cu/Ag/Mo,(S2) ZnS/Sn/Ag/Cu/Mo and (S3) ZnS/Ag/Sn/Cu/Mo. The stacked precursors were sulfurized through a soft annealing, followed by a two-step sulfurization in a chamber filled with N 2 at standard atmospheric pressure. The x-ray photoelectron spectroscopy elemental profile showed a vertical nonuniform distribution of Ag in the film. Based on the results of scanning electron microscopy and electron probe microanalysis, Ag enrichment of the upper surface was beneficial for the grain size. Moreover, a dense, uniform surface could be obtained and the stability of the elemental composition could be maintained. After optimizing the order of the Ag layers, the efficiency of the solar cells increased from 1.30% to 3.65%, an improvement of 181%. The open circuit voltage is increased from 448 mV to 630 mV because of the reduced voids, increased grain size, and reduced Cu Zn antisite defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.