In-depth profiling of genetic variations in the gut microbiome is highly desired for understanding its functionality and impacts on host health and disease. Here, by harnessing the long read advantage provided by Oxford Nanopore Technology (ONT), we characterize fine-scale genetic variations of structural variations (SVs) in hundreds of gut microbiomes from healthy humans. ONT long reads dramatically improve the quality of metagenomic assemblies, enable reliable detection of a large, expanded set of structural variation types (notably including large insertions and inversions). We find SVs are highly distinct between individuals and stable within an individual, representing gut microbiome fingerprints that shape strain-level differentiations in function within species, complicating the associations to metabolites and host phenotypes such as blood glucose. In summary, our study strongly emphasizes that incorporating ONT reads into metagenomic analyses expands the detection scope of genetic variations, enables profiling strain-level variations in gut microbiome, and their intricate correlations with metabolome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.