The biggest challenge of potassium-ion batteries (KIBs) application is to develop high-performance electrode materials to accommodate the potassium ions large size. Herein, by rational design, we carbonize three-dimensional (3D) ordered macroporous ZIF-8 to fabricate 3D interconnected nitrogen-doped hierarchical porous carbon (N-HPC) that shows excellent rate performance (94 mAh g −1 at 10.0 A g −1 ), unprecedented cycle stability (157 mA g −1 after 12000 cycles at 2.0 A g −1 ), and superior reversible capacity (292 mAh g −1 at 0.1 A g −1 ). The 3D hierarchical porous structure diminishes the diffusion distance for both ions/electrons, while N-doping improves the reactivity and electronic conductivity via producing more defects. In addition, the bicontinuous structure possesses a large specific surface area, decreasing the current density, again improving the rate performance. In situ Raman spectra analysis confirms the potassiation and depotassiation in the N-HPC are highly reversible processes. The galvanostatic intermittent titration measurement and first-principles calculations reveal that the interconnected macropores are more beneficial to the diffusion of the K + . This 3D interpenetrating structure demonstrates a superiority for energy storage applications.
Sodium‐ion batteries (NIBs) have attracted more and more attention as economic alternatives for lithium‐ion batteries (LIBs). Sodium super ionic conductor (NASICON) structure materials, known for high conductivity and chemical diffusion coefficient of Na+ (≈10−14 cm2 s−1), are promising electrode materials for NIBs. However, NASICON structure materials often suffer from low electrical conductivity (<10−4 S cm−1), which hinders their electrochemical performance. Here high performance sodium storage performance in Na3V2(PO4)3 (NVP) is realized by optimizing nanostructure and rational surface engineering. A N, B codoped carbon coated three‐dimensional (3D) flower‐like Na3V2(PO4)3 composite (NVP@C‐BN) is designed to enable fast ions/electrons transport, high‐surface controlled energy storage, long‐term structural integrity, and high‐rate cycling. The conductive 3D interconnected porous structure of NVP@C‐BN greatly releases mechanical stress from Na+ extraction/insertion. In addition, extrinsic defects and active sites introduced by the codoping heteroatoms (N, B) both enhance Na+ and e− diffusion. The NVP@C‐BN displays excellent electrochemical performance as the cathode, delivering reversible capacity of 70% theoretical capacity at 100 C after 2000 cycles. When used as anode, the NVP@C‐BN also shows super long cycle life (38 mA h g−1 at 20 C after 5000 cycles). The design provides a novel approach to open up possibilities for designing high‐power NIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.