Isolation of single circulating tumor cells (CTCs) from patients is a very challenging technique that may promote the process of individualized antitumor therapies. However, there exist few systems capable of highly efficient capture and release of single CTCs with high viability for downstream analysis and culture. Herein, we designed a near-infrared (NIR) light-responsive substrate for highly efficient immunocapture and biocompatible site-release of CTCs by a combination of the photothermal effect of gold nanorods (GNRs) and a thermoresponsive hydrogel. The substrate was fabricated by imprinting target cancer cells on a GNR-pre-embedded gelatin hydrogel. Micro/nanostructures generated by cell imprinting produce artificial receptors for cancer cells to improve capture efficiency. Temperature-responsive gelatin dissolves rapidly at 37 °C; this allows bulk recovery of captured CTCs at physiological temperature or site-specific release of single CTCs by NIR-mediated photothermal activation of embedded GNRs. Furthermore, the system has been applied to capture, individually release, and genetically analyze CTCs from the whole blood of cancer patients. The multifunctional NIR-responsive platform demonstrates excellent performance in capture and site-release of CTCs with high viability, which provides a robust and versatile means toward individualized antitumor therapies and also shows promising potential for dynamically manipulating cell-substrate interactions in vitro.
61The Tibetan Plateau (TP), known as the "sensible heat pump" and the 62 "atmospheric water tower", modifies monsoon circulations and regional energy and 63 water cycles over Asia (Wu and Zhang 1998; Zhao and Chen 2001a; Wu et al. 2007; 64 Xu et al. 2008b; Zhou et al. 2009). Strong ascent over the TP may transport lower-65 tropospheric water vapor and anthropogenic pollutants into the upper troposphere-66 lower stratosphere (UT-LS), which exerts an influence on the local ozone valley 67 (Zhou et al. 1995; Liu et al. 2003; Bian et al. 2011) and the aerosol-layer 68 enhancements near the tropopause (Tobo et al. 2007; Vernier et al. 2015). The TP also In the 1990s, a longer-term field experiment was conducted over the TP with the 84 support of the Japanese Experiment on Asian Monsoon (JEXAM). It estimated the 2008a; Zhang et al. 2012; Chen et al. 2011 Chen et al. , 2013. It found diurnal variations of et al. 2013; Hu et al. 2014; Zheng et al. 2014 Zheng et al. , 2015a Zheng et al. , b, c, 2016 Guo et al. 2015; 161 Zhuo et al. 2016; Wan et al. 2017). These problems may also cause large uncertainties 162 in reanalysis datasets and satellite products (such as air temperature, soil moisture, 163 surface heat fluxes, and radiation) over the TP (Li et al. 2012; Wang et al. 2012; Zhu 164 et al. 2012; Su et al. 2013; Zeng et al. 2016). 165To promote Tibetan meteorological research, the Third Tibetan Plateau 166Atmospheric Scientific Experiment (TIPEX-III), to continue for eight to ten years, OBJECTIVES. 173The field observational objective of TIPEX-III is to constitute a 3-D observation 174 system of the land surface, PBL, troposphere, and lower stratosphere over the TP. 175This system integrates ground-, air-, and space-based platforms based on the 176 meteorological operational networks, the TIPEX-III network, the existing NIOST (Fig. 1a). Consistent with the operational observations of the 265 CMA, at each site the measurement system measures soil water content ( Fig. 1a). The regional network consists of 33 sites over 270 Naqu (Fig. 1c), which began operating in August 2015, and 17 sites over Shiquanhe This network consists of six additional sites at Bange, Namucuo, Anduo, Nierong, 280Jiali, and Biru, and contributes to integrated research on the high-resolution land-281 surface and PBL processes over the central TP and their effects on mesoscale systems. 282These observations have been conducted at Shiquanhe, Namucuo, Naqu, Anduo, Gongshan (98.67°E, 27.75°N) station on the southeastern slope of the TP (Fig. 1b), a 300 key area for gauging water-vapor transports from the Indian Ocean to East Asia. (Fig. 1b). A primary goal of these observations is to explore the cloud (Fig. 1b). A follow-up field campaign using ground-based radars Tuotuohe, Mangya, Golmud, and Xining meteorological stations (Fig. 1b). Using PRELIMINARY ACHIEVEMENTS OF TIPEX-III. 328The implementation of TIPEX-III has enhanced the monitoring capability for the 380(1) Cloud diurnal variation and warm rain process. 3...
Abstract. An accelerating Brewer–Dobson circulation (BDC) is a robust signal of climate change in model predictions but has been questioned by trace gas observations. We analyse the stratospheric mean age of air and the full age spectrum as measures for the BDC and its trend. Age of air is calculated using the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by ERA-Interim, JRA-55 and MERRA-2 reanalysis data to assess the robustness of the representation of the BDC in current generation meteorological reanalyses. We find that the climatological mean age significantly depends on the reanalysis, with JRA-55 showing the youngest and MERRA-2 the oldest mean age. Consideration of the age spectrum indicates that the older air for MERRA-2 is related to a stronger spectrum tail, which is likely associated with weaker tropical upwelling and stronger recirculation. Seasonality of stratospheric transport is robustly represented in reanalyses, with similar mean age variations and age spectrum peaks. Long-term changes from 1989 to 2015 turn out to be similar for the reanalyses with mainly decreasing mean age accompanied by a shift of the age spectrum peak towards shorter transit times, resembling the forced response in climate model simulations to increasing greenhouse gas concentrations. For the shorter periods, 1989–2001 and 2002–2015, the age of air changes are less robust. Only ERA-Interim shows the hemispheric dipole pattern in age changes from 2002 to 2015 as viewed by recent satellite observations. Consequently, the representation of decadal variability of the BDC in current generation reanalyses appears less robust and is a major uncertainty of modelling the BDC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.