Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis.
The observation that pulmonary inflammatory lesions and bleomycin (BLM)-induced pulmonary fibrosis spontaneously resolve in young mice, while remaining irreversible in aged mice, suggests that impairment of pulmonary regeneration and repair is associated with aging. Since mesenchymal stem cells (MSCs) may promote repair following injury, we postulated that differences in MSCs from aged mice may underlie post-injury fibrosis in aging. The potential for young-donor MSCs to inhibit BLM-induced pulmonary fibrosis in aged male mice (>22 months) has not been studied. Adipose-derived MSCs (ASCs) from young (4-month) and old (22-month) male mice were infused 1-day following intratracheal BLM administration. At 21-day sacrifice, aged BLM mice demonstrated lung fibrosis by Ashcroft score, collagen content, and αv-integrin mRNA expression. Lung tissue from aged BLM mice receiving young ASCs exhibited decreased fibrosis, matrix metalloproteinase (MMP)-2 activity, oxidative stress, and markers of apoptosis vs. BLM controls. Lung mRNA expression of TNFα was also decreased in aged BLM mice receiving young-donor ASCs vs. BLM controls. In contrast, old-donor ASC treatment in aged BLM mice did not reduce fibrosis and related markers. On examination of the cells, young-donor ASCs had decreased mRNA expression of MMP-2, insulin-like growth factor receptor, and AKT activation compared to old-donor ASCs. These results show that the BLM-induced pulmonary fibrosis in aged mice could be blocked by young-donor ASCs and that the mechanisms involve changes in collagen turnover and markers of inflammation.
Diabetic nephropathy remains one of the most important causes of end-stage renal disease. This is particularly true for women from racial/ethnic minorities. Although administration of 17beta-estradiol to diabetic animals has been shown to reduce extracellular matrix deposition in glomeruli and mesangial cells, effects on podocytes are lacking. Given that podocyte injury has been implicated as a factor leading to the progression of proteinuria and diabetic nephropathy, we treated db/db mice, a model of type 2 diabetic glomerulosclerosis, with 17beta-estradiol or tamoxifen to determine whether these treatments reduce podocyte injury and decrease glomerulosclerosis. We found that albumin excretion, glomerular volume, and extracellular matrix accumulation were decreased in these mice compared to placebo treatment. Podocytes isolated from all treatment groups were immortalized and these cell lines were found to express the podocyte markers WT-1, nephrin, and the TRPC6 cation channel. Tamoxifen and 17beta-estradiol treatment decreased podocyte transforming growth factor-beta mRNA expression but increased that of the estrogen receptor subtype beta protein. 17beta-estradiol, but not tamoxifen, treatment decreased extracellular-regulated kinase phosphorylation. These data, combined with improved albumin excretion, reduced glomerular size, and decreased matrix accumulation, suggest that both 17beta-estradiol and tamoxifen may protect podocytes against injury and therefore ameliorate diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.