BackgroundMale infertility is a major issue of human reproduction health. Asthenoteratospermia can impair sperm motility and cause male infertility. Asthenoteratospermia with multiple morphological abnormalities of the flagella (MMAF) presents abnormal spermatozoa with absent, bent, coiled, short and/or irregular-calibre flagella. Previous studies on MMAF reported that genetic defects in cilia-related genes (eg, AKAP4, DNAH1, CFAP43, CFAP44 and CFAP69) are the major cause of MMAF. However, the known MMAF-associated genes are only responsible for approximately 30% to 50% of human cases. We further investigated the cases with MMAF in search of additional genes mutated in this condition.Methods and resultsWe conducted whole exome sequencing in a male individual with MMAF from a consanguineous Han Chinese family. Sanger sequencing was also conducted in additional individuals with MMAF. Intriguingly, a homozygous frameshift mutation (p.Leu357Hisfs*11) was identified in the gene encoding CFAP69 (cilia and flagella-associated protein 69), which is highly expressed in testis. The subsequent Sanger sequencing of the CFAP69 coding regions among 34 additional individuals with MMAF revealed a case with homozygous nonsense mutation (p.Trp216*) of CFAP69. Both of these CFAP69 loss-of-function mutations were not present in the human population genome data archived in the 1000 Genomes Project and ExAC databases, nor in 875 individuals of two Han Chinese control populations. Furthermore, we generated the knockout model in mouse orthologue Cfap69 using the CRISPR-Cas9 technology. Remarkably, male Cfap69-knockout mice manifested with MMAF phenotypes.ConclusionOur experimental findings elucidate that homozygous loss-of-function mutations in CFAP69 can lead to asthenoteratospermia with MMAF in humans and mice.
BackgroundMale infertility is a prevalent issue worldwide, mostly due to the impaired sperm motility. Multiple morphological abnormalities of the sperm flagella (MMAF) present aberrant spermatozoa with absent, short, coiled, bent and irregular-calibre flagella resulting in severely decreased motility. Previous studies reported several MMAF-associated genes accounting for approximately half of MMAF cases.Methods and resultWe conducted genetic analysis using whole-exome sequencing in 88 Han Chinese MMAF probands. CFAP65 homozygous mutations were identified in four unrelated consanguineous families, and CFAP65 compound heterozygous mutations were found in two unrelated cases with MMAF. All these CFAP65 mutations were null, including four frameshift mutations (c.1775delC [p.Pro592Leufs*8], c.3072_3079dup [p.Arg1027Profs*41], c.1946delC [p.Pro649Argfs*5] and c.1580delT [p.Leu527Argfs*31]) and three stop-gain mutations (c.4855C>T [p.Arg1619*], c.5270T>A [p.Leu1757*] and c.5341G>T [p.Glu1781*]). Additionally, two homozygous CFAP65 variants likely affecting splicing were identified in two MMAF-affected men of Tunisian and Iranian ancestries, respectively. These biallelic variants of CFAP65 were verified by Sanger sequencing and were absent or very rare in large data sets aggregating sequence information from various human populations. CFAP65, encoding the cilia and flagella associated protein 65, is highly and preferentially expressed in the testis. Here we also generated a frameshift mutation in mouse orthologue Cfap65 using CRISPR-Cas9 technology. Remarkably, the phenotypes of Cfap65-mutated male mice were consistent with human MMAF.ConclusionsOur experimental observations performed on both human subjects and on Cfap65-mutated mice demonstrate that the presence of biallelic mutations in CFAP65 causes the MMAF phenotype and impairs sperm motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.