Flavonoids (dihydromyricetin, dihydroquercetin, epicatechin, and epigallocatechin) were applied to indicate the critical formation condition of the Amadori rearrangement product (ARP) in Maillard reaction performed under a two-step temperature rising process in the threonine−xylose model system. Threonine-ARP (Thr-ARP) was mixed with dihydromyricetin (DM), dihydroquercetin (DQ), epicatechin (EC), and epigallocatechin (EGC) before the heat treatment; then, the mixture was tested by liquid chromatography−mass spectrometry (LC−MS). The results showed that these flavonoids trapped the ARP and generated adducts. The A-ring of flavonoids (the meta-polyhydroxylated benzene ring) was the functional group to capture the Thr-ARP. The relative contents of the adducts of DM-Thr-ARP, DQ-Thr-ARP, EC-Thr-ARP, and EGC-Thr-ARP were compared with each other, and it was found that the structure of the C-ring of the flavonoids (the carbonyl group on C-4) significantly impeded the formation of adducts with Thr-ARP, while the number of hydroxyl groups on the B-ring had little influence. The formation of adducts delayed the degradation of Thr-ARP, decreased the production of α-dicarbonyl compounds, and suppressed Maillard browning. In this way, the flavonoids might trace the critical formation conditions of ARP during the two-step temperature rising process.
The intervention of cysteine (Cys) on the formation of 2,3-butanedione and pyrazines was evaluated during the thermal processing of the alanine-xylose Amadori compound (AX-ARP). With the involvement of Cys, the competitive formation of 2,3-butanedione and pyrazines was induced. The formation of 2,3-butanedione in the AX-ARP/Cys model was suppressed due to the inhibitory effect of the precursors of 2,3-butanedione like deoxypentosones, while the added Cys in the AX-ARP/Cys model competed with the recovered alanine (Ala) to capture glyoxal and methylglyoxal to make up for the absence of pyrazines in the AX-ARP model at an initial pH value of 7. The content of pyrazines increased from 0 up to 16.48 μg/L (120 °C, 120 min). Exogenous Cys itself showed lower reactivity with 2,3-butanedione through the Strecker degradation reaction; while the pH was increased to 8, the degradative products of Cys were facilitated to consume the residual 2,3-butanedione giving rise to the formation of 2,4,5trimethylthiazole at 120 °C. It was the degradative products of Cys that accelerated the reaction for consumption of 2,3-butanedione rather than Cys itself. Additionally, the inhibitory effect of Cys on 2,3-butanedione formation was weakened under a basic condition, while the promotional effect on the formation of pyrazines was further boosted. With more Cys participating in the process of AX-ARP thermal degradation, the formation of 2,3-butanedione was further inhibited, while the yields of pyrazines were increased.
An Amadori rearrangement product (ARP) derived from ribose (Rib) and glutathione (GSH) was prepared and identified as N-(1-deoxy-D-ribulos-1-yl)-glutathione by ultraperformance liquid chromatography−tandem mass spectrometry and NMR. Thermal treatment of the ARP aqueous solution was conducted, and a relatively high temperature was found to accelerate the degradation of the ARP. The concentration of furans formed at 120 °C was more than 6.39 times that at 100 °C, and especially, the high temperature favored the formation of furfural and 4-hydroxy-5-methyl-3(2H)-furanone through deoxyosone dehydration. The promoting role of extra-added GSH or its constituent amino acids was investigated in the volatile formation during thermal processing of the ARP. Both, the added GSH and its constituent amino acids, could timely capture glyoxal (GO) and methylglyoxal (MGO) to facilitate Strecker degradation, which improved pyrazine formation. Compared with glycine and glutamic acid, cysteine was the most effective extra-added amino acid to react with GO and MGO to produce pyrazine and methylpyrazine. More importantly, the cysteine degraded from extra-added GSH effectively accelerated the generation of sulfur-containing volatile compounds through the reaction of cysteine degradation products with furans and shorter-chain α-dicarbonyl compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.