Background. Bacterial vaginosis (BV), one of the most common vaginal ecosystem-related microbiologic syndromes, is the most common disorder in women of reproductive age. Gardnerella (G.) vaginalis is the predominant species causing this infection. Our aim was to compare the antimicrobial susceptibilities of metronidazole and clindamycin against G. vaginalis at planktonic and biofilm levels. Methods. From September 2019 to October 2019, we recruited a total of 10 patients with BV who underwent gynecological examinations at Beijing Obstetrics and Gynecology Hospital. G. vaginalis isolates were obtained from the vagina and identified using their characteristic colony morphology. Sequence data of clinical G. vaginalis isolates were confirmed by comparing 16S rDNA sequences. Subsequently, clinical isolates were evaluated for antimicrobial susceptibilities in vitro to metronidazole and clindamycin at planktonic and biofilm levels. The minimum inhibitory concentration (MIC) for metronidazole and clindamycin was evaluated by antimicrobial susceptibility testing. The minimum biofilm eradication concentration (MBEC) was evaluated by the biofilm inhibition assay. Results. Planktonic clinical isolates showed a significantly higher susceptibility rate (76.67%) and lower resistance rate (23.33%) to clindamycin than to metronidazole (susceptibility rate: 38.24%; resistance rate: 58.82%; P<0.05 for both). Furthermore, in comparison to planktonic isolates, the minimum inhibitory concentration (MIC) of metronidazole was significantly higher for biofilm-forming isolates (7.3 ± 2.6 μg/mL vs. 72.4 ± 18.3 μg/mL; P=0.005); the resistance rate was 27.3%, and the minimum biofilm eradication concentration (MBEC) was >128 μg/mL. Moreover, the MIC of clindamycin was higher too for biofilm-forming isolates (0.099 ± 0.041 μg/mL vs. 23.7 ± 9.49 μg/mL; P=0.034); the resistance rate was 27.3%, and the MBEC of clindamycin was 28.4 ± 6.50 μg/mL. Conclusion. Our results indicate that in comparison to metronidazole, clindamycin seems to be a better choice to tackle G. vaginalis as it exhibits a relatively higher susceptibility rate and lower resistance rate.
Background High-risk human papilloma virus (hrHPV) is the main causal factor of cervical precancer and cancer when persistent infection is left untreated. Previous studies have confirmed the vaginal microbiota is associated with HPV infection and the development of cervical lesions. The microbiota at different parts of the female genital tract is closely related but different from each other. To analyze the distinction between the vaginal and cervical microbiota of hrHPV(+) women in China, one hundred subjects were recruited, including 10 patients with HPV16/18(+) and cervical carcinoma, 38 patients with HPV16/18(+) but no cervical carcinoma, 32 patients with other hrHPV(+) and 20 healthy controls with HPV(−). Vaginal and cervical microbiota were separately tested through next-generation sequencing (NGS) targeting the variable region (V3-V4) of the bacterial ribosome 16S rRNA gene. Results HrHPV(+) subjects had higher percentages of vaginal douching history (P = 0.001), showed more frequent usage of sanitary pads (P = 0.007), had more sex partners (P = 0.047), were more sexually active (P = 0.025) and more diversed in ways of contraception (P = 0.001). The alpha diversity of the cervical microbiota was higher than that of the vagina. The cervical microbiota consisted of a lower percentage of Firmicutes and a higher percentage of Proteobacteria than the vagina at the phylum level. Sphingomonas, belonging to α-Proteobacteria, was almost below the detection limit in the vagina but accounted for five to 10 % of the bacteria in the hrHPV(−) cervix (P<0.001) and was inversely associated with hrHPV infection (P<0.05). Pseudomonas, belonging to γ-Proteobacteria, could hardly be seen in the normal vagina and shared a small percentage in the normal cervix but was significantly higher in the HPV16/18(+) (P<0.001) and cancerous cervix (P<0.05). No significant difference was shown in the percentage of BV associated anaerobes, like Gardnerella, Prevotella, Atopobium and Sneathia, between the cevix and vigina. Conclusions The proportion of Proteobacteria was significantly higher in the cervical microbiota than that of vagina. The hrHPV infection and cervical cancer was positively associated with Pseudomonas and negatively associated with Sphingomonas. It is of great improtance to deeply explore the cervical microbiota and its function in cervical cacinogenesis.
Background: Patients with pelvic inflammatory disease (PID) are at an increased risk of ectopic pregnancy, infertility, and varying degrees of chronic pelvic pain. The aims of this study were to establish a rat model of PID and characterize its progression in order to assist in the study of pathophysiological mechanisms and to provide animal model for future studies of PID treatments.Methods: Fifty Sprague-Dawley rats (female, 6-weeks-old) were divided into a model group (n=28) and a control group (n=22). The rat endometrium was mechanically injured by a needle which moved back and forth 3 times on the endometrial tissue, and a mixed bacterial solution (6×10 8 CFU) of equal concentrations of Escherichia coli and Staphylococcus aureus was injected into both horns of the rat uterus. Physiological characteristics including weight, temperature, blood, and inflammatory factors were compared, and immunohistochemistry and transmission electron microscopy were used to evaluate the progress and sequela of PID. Results:The model rats experienced acute PID in the first 14 days and exhibited higher body temperatures and decreased body weight. Infection-related factors in the blood were also significantly changed compared with the normal group, with obviously increased serum levels of C-reactive protein (CRP), interferon gamma (IFN-γ), and interleukin-4 (IL-4). Congestion and edema were observed in the uteri of the model rats, followed by infiltration of numerous inflammatory cells and ultrastructural morphology changes.Histological examination of the uterus showed that adhesion initially appeared at approximately 21 days.In addition to the increased collagen fibers biomass, the expression of transforming growth factor-beta 1 (TGF-β1) was elevated, which might have contributed to pelvic tissue adhesion formation in the PID sequela.Conclusions: This study clearly described the characteristics and progression of PID in a rat model. The detailed evidence increased our understanding of the pathogenesis and progression of PID and may be useful for future studies of PID treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.