Connectivity analyses and computational modeling of human brain function from fMRI data frequently require the specification of regions of interests (ROIs). Several analyses have relied on atlases derived from anatomical or cyto-architectonic boundaries to specify these ROIs, yet the suitability of atlases for resting state functional connectivity studies has yet to be established. This paper introduces a data-driven method for generating an ROI atlas by parcellating whole brain resting-state fMRI data into spatially coherent regions of homogeneous functional connectivity. Several clustering statistics are used to compare methodological trade-offs as well as determine an adequate number of clusters. Additionally, we evaluate the suitability of the parcellation atlas against four ROI atlases (Talairach and Tournoux, Harvard-Oxford, Eickoff-Zilles, and Automatic Anatomical Labeling) and a random parcellation approach. The evaluated anatomical atlases exhibit poor ROI homogeneity and do not accurately reproduce functional connectivity patterns present at the voxel scale. In general, the proposed functional and random parcellations perform equivalently for most of the metrics evaluated. ROI size and hence the number of ROIs in a parcellation had the greatest impact on their suitability for functional connectivity analysis. With 200 or fewer ROIs, the resulting parcellations consist of ROIs with anatomic homology, and thus offer increased interpretability. Parcellation results containing higher numbers of ROIs (600 or 1000) most accurately represent functional connectivity patterns present at the voxel scale and are preferable when interpretability can be sacrificed for accuracy. The resulting atlases and clustering software have been made publicly available at: http://www.nitrc.org/projects/cluster_roi/.
The arcuate fasciculus is a white-matter fiber tract that is involved in human language. Here we compared cortical connectivity in humans, chimpanzees and macaques (Macaca mulatta) and found a prominent temporal lobe projection of the human arcuate fasciculus that is much smaller or absent in nonhuman primates. This human specialization may be relevant to the evolution of language.
Most fMRI studies are based on the detection of a positive BOLD response (PBR). Here, we demonstrate and characterize a robust sustained negative BOLD response (NBR) in the human occipital cortex, triggered by stimulating part of the visual field. The NBR was spatially adjacent to but segregated from the PBR. It depended on the stimulus and thus on the pattern of neuronal activity. The time courses of the NBR and PBR were similar, and their amplitudes covaried both with increasing stimulus duration and increasing stimulus contrast. The NBR was associated with reductions in blood flow and with decreases in oxygen consumption. Our findings support the contribution to the NBR of (1) a significant component of reduction in neuronal activity and (2) possibly a component of hemodynamic changes independent of the local changes in neuronal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.