Progressive myoclonic epilepsy (PME) is a rare neurodegenerative disease, characterized by myoclonic seizures and tonic clonic seizures, with genetical and phenotypical heterogeneity. The semaphorin 6B (SEMA6B) gene has been recently reported a causal gene of PME. Independent studies are warranted to further support these findings. Here we report that one nonsense variant in NM_032108.3 exon17 c.2056C > T (p.Gln686∗) and one missense variant in exon14 c.1483G > T (p.Gly495Trp) of SEMA6B, both occurring de novo, underlie early-onset epilepsy with variable severity and different response to treatment in two patients. In vitro analyses have demonstrated that the nonsense variant, p.Gln686∗, results in a truncated protein with remarkably increased expression compared to that of the wild type. The truncated protein presented more homogeneous and failed to locate in the plasma membrane. The missense variant p.Gly495Trp affects evolutionarily conserved amino acid and is located in the sema domain, a key functional domain of SEMA6B. It was predicted to perturb the SEMA6B function by altering the tertiary structure of mutant protein, although neither change of protein length and expression nor difference of cellular distribution was observed. Co-immunoprecipitation studies have demonstrated that both variants influence protein binding of SEMA6B and PlxnA2 with varying degrees. Our results provide further evidence to support the initial findings of SEMA6B being causal to epilepsy and indicate that mediating Semaphorin/Plexin signaling is the potential mechanism of the SEMA6B-related disease.
The RNA polymerase II transcription subunit 12 homolog (MED12) is a member of the mediator complex, which plays a critical role in RNA transcription. Mutations in MED12 cause X-linked intellectual disability and other anomalies collectively grouped as MED12related disorders. While MED12 mutations have been most commonly reported in male patients, we present the case of a 1-year-old girl with clinical characteristics similar to MED12-related disorders. To explore the clinical characteristics of the condition and its possible pathogenesis, we analyzed the patient's clinical data; genetic testing by wholeexome sequencing revealed a de novo heterozygous mutation (c.1249-1G > C) in MED12. Further cDNA experiments revealed that the patient had an abnormal splicing at the skipping of exon9, which may have produced a truncated protein. qPCR showed decreased MED12 gene expression level in the patient, and an X-chromosome inactivation test confirmed a skewed inactivation of the X-chromosome. The lymphoblast transcription levels of the genes involved in the Gli3-dependent sonic hedgehog (SHH) signaling pathway, namely, CREB5, BMP4, and NEUROG2, were found to be significantly elevated compared with those of her parents and sex-and age-matched controls. Our results support the view that MED12 mutations may dysregulate the SHH signaling pathway, which may have accounted for the aberrant craniofacial morphology of our patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.