Rare species are increasingly recognized as crucial, yet vulnerable components of Earth's ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area.
A central question in the field of graphene-related research is how graphene behaves when it is patterned at the nanometre scale with different edge geometries. A fundamental shape relevant to this question is the graphene nanoribbon (GNR), a narrow strip of graphene that can have different chirality depending on the angle at which it is cut. Such GNRs have been predicted to exhibit a wide range of behaviour, including tunable energy gaps 1,2 and the presence of one-dimensional (1D) edge states [3][4][5] with unusual magnetic structure 6,7 . Most GNRs measured up to now have been characterized by means of their electrical conductivity, leaving the relationship between electronic structure and local atomic geometry unclear [8][9][10] . Here we present a sub-nanometre-resolved scanning tunnelling microscopy (STM) and spectroscopy (STS) study of GNRs that allows us to examine how GNR electronic structure depends on the chirality of atomically well-defined GNR edges. The GNRs used here were chemically synthesized using carbon nanotube (CNT) unzipping methods that allow flexible variation of GNR width, length, chirality, and substrate 11,12 . Our STS measurements reveal the presence of 1D GNR edge states, the behaviour of which matches theoretical expectations for GNRs of similar width and chirality, including width-dependent energy splitting of the GNR edge state.The chirality of a GNR is characterized by a chiral vector (n,m) or, equivalently, by chiral angle θ, as shown in Fig. 1a. GNRs having different widths and chiralities were deposited on a clean Au(111) surface and measured using STM. Figure 1b shows a room temperature image of a single monolayer GNR (GNR height is determined from linescans, such as that shown in Fig. 1b inset; some multilayer GNRs were observed, but we focus here on monolayer GNRs). The GNR of Fig. 1b has a width of 23.1 nm, a length greater than 600 nm, and exhibits straight, atomically smooth edges (the highest quality GNR edges, such as those shown in Figs 1 and 2, were observed in GNRs synthesized as in ref. 11). Such GNRs are seen to have a 'bright stripe' running along each edge.This stripe marks a region of curvature near the terminal edge of the GNR that has a maximum extension of ∼3 Å above the mid-plane terrace of the GNR and a width of ∼30 Å (see line scan in Fig. 1b inset). Such edge-curvature was observed for all high-quality GNRs examined in this study (more than 150, including GNRs deposited onto a Ru (0001) is reminiscent of curved edge structures observed previously near graphite step-edges 13 . We rule out that these GNRs are collapsed nanotubes by virtue of the measured ratio (observed to be π) of GNR width to nanotube height for partially unzipped CNTs. We further rule out that the curved GNR edges observed here are folded graphene boundaries by means of a detailed comparison of terminal curved edges and actual folded edges (see Supplementary Information). Low-temperature STM images (Figs 1c and 2a) show finer structure in both the interior GNR terrace and the edge re...
Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.