The rapid antidepressant response after ketamine administration in treatment resistant depressed patients suggests a possible new approach for treating mood disorders compared to the weeks or months required for standard medications. However, the mechanisms underlying this action of ketamine have not been identified. We observed that ketamine rapidly activated the mammalian target of rapamycin (mTOR) pathway, leading to increased synaptic signaling proteins and increased number and function of new spine synapses in the prefrontal cortex of rat. Moreover, blockade of mTOR signaling completely blocked ketamine-induction of synaptogenesis and behavioral responses in models of depression. Our results demonstrate that these effects of ketamine are opposite to the synaptic deficits that result from exposure to stress and could contribute to the fast antidepressant actions of ketamine.
Background
Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants, or the molecular mechanisms that could account for the rapid responses.
Methods
We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex (PFC) neurons.
Results
The results demonstrate that acute treatment with the non-competitive NMDA channel blocker ketamine or the selective NR2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonia and anxiogenic behaviors. We also find that CUS exposure decreases the expression levels of synaptic proteins and spine number and the frequency/amplitude of synaptic currents (EPSCs) in layer V pyramidal neurons in the PFC, and that these deficits are rapidly reversed by ketamine. Blockade of the mammalian target of rapamycin (mTOR) protein synthesis cascade abolishes both the behavioral and biochemical effects of ketamine.
Conclusions
The results indicate that the structural and functional deficits resulting from long-term stress exposure, which could contribute to the pathophysiology of depression, are rapidly reversed by NMDA receptor antagonists in an mTOR-dependent manner.
This communication describes the use of polyelectrolyte multilayer as a preformed matrix in electrochemical deposition to adjust the morphology of gold clusters, and only the surface covered with dendritic gold clusters shows a super-hydrophobic property, with the contact angle above 150 degrees and the tilt angle less than 1.5 degrees , after the surface further chemisorbed with a self-assembled monolayer of n-dodecanethiol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.