Ferroptosis, implicated in several diseases, is a new form of programmed and nonapoptotic cell death triggered by iron-dependent lipid peroxidation after inactivation of the cystine/glutamate antiporter system xc–, which is composed of solute carrier family 7 membrane 11 (SLC7A11) and solute carrier family 3 membrane 2 (SLC3A2). Therefore, inducing ferroptosis through inhibiting the cystine/glutamate antiporter system xc– may be an effective way to treat cancer. In previous screening tests, we found that the benzopyran derivative 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) significantly inhibited the viability of colorectal cancer cells. However, the impact of IMCA on ferroptosis remains unknown. Hence, this study investigated the effect of IMCA on ferroptosis and elucidated the underlying molecular mechanism. Results showed that IMCA significantly inhibited the cell viability of colorectal cancer cells in vitro and inhibited tumor growth with negligible organ toxicity in vivo. Further studies showed that IMCA significantly induced the ferroptosis of colorectal cancer cells. Mechanistically, IMCA downregulated the expression of SLC7A11 and decreased the contents of cysteine and glutathione, which resulted in reactive oxygen species accumulation and ferroptosis. Furthermore, overexpression of SLC7A11 significantly attenuated the ferroptosis caused by IMCA. In addition, IMCA regulated the activity of the AMPK/mTOR/p70S6k signaling pathway, which is related to the activity of SLC7A11 and ferroptosis. Collectively, our research provided experimental evidences on the activity and mechanism of ferroptosis induced by IMCA and revealed that IMCA might be a promising therapeutic drug for colorectal cancer.
PURPOSE Standard adjuvant chemotherapy for triple-negative breast cancer (TNBC) includes a taxane and an anthracycline. Concomitant capecitabine may be beneficial, but robust data to support this are lacking. The efficacy and safety of the addition of capecitabine into the TNBC adjuvant treatment regimen was evaluated. PATIENTS AND METHODS This randomized, open-label, phase III trial was conducted in China. Eligible female patients with early TNBC after definitive surgery were randomly assigned (1:1) to either capecitabine (3 cycles of capecitabine and docetaxel followed by 3 cycles of capecitabine, epirubicin, and cyclophosphamide) or control treatment (3 cycles of docetaxel followed by 3 cycles of fluorouracil, epirubicin, and cyclophosphamide). Randomization was centralized without stratification. The primary end point was disease-free survival (DFS). RESULTS Between June 2012 and December 2013, 636 patients with TNBC were screened, and 585 were randomly assigned to treatment (control, 288; capecitabine, 297). Median follow-up was 67 months. The 5-year DFS rate was higher for capecitabine than for control treatment (86.3% v 80.4%; hazard ratio, 0.66; 95% CI, 0.44 to 0.99; P = .044). Five-year overall survival rates were numerically higher but not significantly improved (capecitabine, 93.3%; control, 90.7%). Overall, 39.1% of patients had capecitabine dose reductions, and 8.4% reported grade ≥ 3 hand-foot syndrome. The most common grade ≥ 3 hematologic toxicities were neutropenia (capecitabine, 136 [45.8%]; control, 118 [41.0%]) and febrile neutropenia (capecitabine, 50 [16.8%]; control, 46 [16.0%]). Safety data were similar to the known capecitabine safety profile and generally comparable between arms. CONCLUSION Capecitabine when added to 3 cycles of docetaxel followed by 3 cycles of a 3-drug anthracycline combination containing capecitabine instead of fluorouracil significantly improved DFS in TNBC without new safety concerns.
BackgroundThe exact mechanism of the effects of hypoxia on the proliferation and apoptosis in carcinoma cells is still conflicting. This study investigated the variation of hypoxia-inducible factor-1α(HIF-1α) expression and the apoptosis effect of hypoxia stimulated by cobalt chloride (CoCl2) in pancreatic cancer PC-2 cells.MethodsPC-2 cells were cultured with different concentration (50-200 μmol/L) of CoCl2 after 24-120 hours to simulate hypoxia in vitro. The proliferation of PC-2 cells was examined by MTT assay. The cellular morphology of PC-2 cells were observed by light inverted microscope and transmission electron microscope(EM). The expression of HIF-1α on mRNA and protein level was measured by semi-quantitive RT-PCR and Western blot analysis. Apoptosis of PC-2 cells were demonstrated by flow cytometry with Annexin V-FITC/PI double staining.ResultsMTT assay showed that the proliferation of PC-2 cells were stimulated in the first 72 h, while after treated over 72 h, a dose- dependent inhibition of cell growth could be observed. By using transmission electron microscope, swollen chondrosomes, accumulated chromatin under the nuclear membrane and apoptosis bodies were observed. Flow cytometer(FCM) analysis showed the apoptosis rate was correlated with the dosage of CoCl2. RT-PCR and Western blot analysis indicated that hypoxia could up-regulate the expression of HIF-1α on both mRNA and protein levels.ConclusionHypoxic microenvironment stimulated by CoCl2 could effectively induce apoptosis and influence cell proliferation in PC-2 cells, the mechanism could be related to up-expression of HIF-1α.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.