To control the spread of the 2019 novel coronavirus (COVID-19), China imposed nationwide restrictions on the movement of its population (lockdown) after the Chinese New Year of 2020, leading to large reductions in economic activities and associated emissions. Despite such large decreases in primary pollution, there were nonetheless several periods of heavy haze pollution in East China, raising questions about the well-established relationship between human activities and air quality. Here, using comprehensive measurements and modeling, we show the haze during the COVID lockdown were driven by enhancements of secondary pollution. In particular, large decreases in NOx emissions from transportation increased ozone and nighttime NO3 radical formation, and these increases in atmospheric oxidizing capacity in turn facilitated the formation of secondary particulate matter. Our results, afforded by the tragic natural experiment of the COVID-19 pandemic, indicate that haze mitigation depends upon a coordinated and balanced strategy for controlling multiple pollutants.
To control the spread of the 2019 novel coronavirus (COVID-19), China imposed nationwide restrictions on the movement of its population (lockdown) after the Chinese New Year of 2020, leading to large reductions in economic activities and associated emissions. Despite such large decreases in primary pollution, there were nonetheless several periods of heavy haze pollution in East China, raising questions about the well-established relationship between human activities and air quality. Here, using comprehensive measurements and modeling, we show the haze during the COVID lockdown were driven by enhancements of secondary pollution. In particular, large decreases in NOx emissions from transportation increased ozone and nighttime NO3 radical formation, and these increases in atmospheric oxidizing capacity in turn facilitated the formation of secondary particulate matter. Our results, afforded by the tragic natural experiment of the COVID-19 pandemic, indicate that haze mitigation depends upon a coordinated and balanced strategy for controlling multiple pollutants.
Secondary organic aerosol (SOA) contributes a significant fraction to aerosol mass and toxicity.Low-volatility organic vapors are critical intermediates connecting the oxidation of volatile organic compounds (VOCs) to SOA formation. However, the direct measurement of intermediate vapors poses a great challenge, further compounded by the difficulty of linking them to specific precursors from a cocktail of complex emission sources in the vast urbanized areas. Here, we present coordinated measurements of low-volatility oxidation products, termed oxygenated organic molecules (OOMs) in three most urbanized regions in China. With a newly-developed analysis methodology, we are able to assign these OOMs to their likely precursors and ultimately connect SOA formation to various VOCs. At all measurement locations, we find similar OOM
Investigating sulfate formation processes is important not only for air pollution control but also for understanding the climate system. Although the mechanisms of secondary sulfate production have been widely studied, in situ observational evidence implicating an important role of NO2 in SO2 oxidation in the real atmosphere has been rare. In this study, we report two unique cases, from an intensive campaign conducted at the Station for Observing Regional Processes of the Earth System (SORPES) in East China, showing distinctly different mechanisms of sulfate formation by NO2 and related nitrogen chemistry. The first case occurred in an episode of mineral dust mixed with anthropogenic pollutants and especially high concentrations of NOx. It reveals that NO2 played an important role, not only in surface catalytic reactions of SO2 but also in dust‐induced photochemical heterogeneous reactions of NO2, which produced additional sources of OH radicals to promote new particle formation and growth. The second case was caused by aqueous oxidation of S(IV) by NO2 under foggy/cloudy conditions with high NH3 concentration. As a by‐product, the formed nitrite enhanced HONO formation and further promoted the gas‐phase formation of sulfate in the downwind area. This study highlights the effect of NOx in enhancing the atmospheric oxidizing capacity and indicates a potentially very important impact of increasing NOx on particulate pollution formation and regional climate change in East Asia.
Understanding new particle formation and their subsequent growth in the troposphere has a critical impact on our ability to predict atmospheric composition and global climate change. High pre-existing particle loadings have been thought to suppress the formation of new atmospheric aerosol particles due to high condensation and coagulation sinks. Here, based on field measurements at a mountain site in South China, we report, for the first time, in situ observational evidence on new particle formation and growth in remote ambient atmosphere during heavy dust episodes mixed with anthropogenic pollution. Both the formation and growth rates of particles in the diameter range 15–50 nm were enhanced during the dust episodes, indicating the influence of photo-induced, dust surface-mediated reactions and resulting condensable vapor production. This study provides unique in situ observations of heterogeneous photochemical processes inducing new particle formation and growth in the real atmosphere, and suggests an unexpected impact of mineral dust on climate and atmospheric chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.