Background: Since being first reported in Wuhan, China, in December 8, 2019, the outbreak of the novel coronavirus, now known as COVID-19, has spread globally. Some case studies regarding the characteristics and outcome of patients with COVID-19 have been published recently. We conducted a meta-analysis to evaluate the risk factors of COVID-19. Methods: Medline, SinoMed, EMBASE, and Cochrane Library were searched for clinical and epidemiological studies on confirmed cases of COVID-19. Results: The incidence of fever, cough, fatigue, and dyspnea symptoms were 85.6 % (95CI 81.3-89.9 %), 65.7 % (95CI 60.1-71.4 %), 42.4 % (95CI 32.2-52.6 %) and 21.4 % (95CI 15.3-27.5 %). The prevalence of diabetes was 7.7 % (95CI 6.1-9.3 %), hypertension was 15.6 % (95CI 12.6-18.6 %), cardiovascular disease was 4.7 % (95CI 3.1-6.2 %), and malignancy was 1.2 % (95CI 0.5-1.8 %). The complications, including ARDS risk, ranged from 5.6-13.2 %, with the pooled estimate of ARDS risk at 9.4 %, ACI at 5.8 % (95CI 0.7-10.8 %), AKI at 2.1 % (95CI 0.6-3.7 %), and shock at 4.7 % (95CI 0.9-8.6 %). The risks of severity and mortality ranged from 12.6 to 23.5% and from 2.0 to 4.4 %, with pooled estimates at 18.0 and 3.2 %, respectively. The percentage of critical cases in diabetes and hypertension was 44.5 % (95CI 27.0-61.9 %) and 41.7 % (95CI 26.4-56.9 %), respectively. Conclusion: Fever is the most common symptom in patients with COVID-19. The most prevalent comorbidities are hypertension and diabetes which are associated with the severity of COVID-19. ARDS and ACI may be the main obstacles for patients to treatment recovery. The case severe rate and mortality is lower than that of SARS and MERS.
Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (α2,3-linked sialic acid) and human-type (α2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1β, MCP-1, IL-6, IL-8 and IFN-α were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.
The recent outbreak of a novel coronavirus SARS-CoV-2 (also known as 2019-nCoV) threatens global health, given serious cause for concern. SARS-CoV-2 is a human-to-human pathogen that caused fever, severe respiratory disease and pneumonia (known as COVID-19). By press time, more than 70,000 infected people had been confirmed worldwide. SARS-CoV-2 is very similar to the severe acute respiratory syndrome (SARS) coronavirus broke out 17 years ago. However, it has increased transmissibility as compared with the SARS-CoV, e.g. very often infected individuals without any symptoms could still transfer the virus to others. It is thus urgent to develop a rapid, accurate and onsite diagnosis methods in order to effectively identify these early infects, treat them on time and control the disease spreading. Here we developed an isothermal LAMP based method-iLACO (isothermal LAMP based method for COVID-19) to amplify a fragment of the ORF1ab gene using 6 primers. We assured the species-specificity of iLACO by comparing the sequences of 11 related viruses by BLAST (including 7 similar coronaviruses, 2 influenza viruses and 2 normal coronaviruses). The sensitivity is comparable to Taqman based qPCR detection method, detecting synthesized RNA equivalent to 10 copies of 2019-nCoV virus. Reaction time varied from 15-40 minutes, depending on the loading of virus in the collected samples. The accuracy, simplicity and versatility of the new developed method suggests that iLACO assays can be conveniently applied with for 2019-nCoV threat control, even in those cases where specialized molecular biology equipment is not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.