A valid quantitative imaging method for the measurement of amyloid deposition in humans could improve Alzheimer's disease (AD) diagnosis and antiamyloid therapy assessment. Our group developed Pittsburgh Compound-B (PIB), an amyloid-binding radiotracer, for positron emission tomography (PET). The current study was aimed to further validate PIB PET through quantitative imaging (arterial input) and inclusion of subjects with mild cognitive impairment (MCI). Pittsburgh Compound-B studies were performed in five AD, five MCI, and five control subjects and five subjects were retested within 20 days. Magnetic resonance images were acquired for partial volume correction and region-of-interest definition (e.g., posterior cingulate: PCG; cerebellum: CER). Data were analyzed using compartmental and graphical approaches. Regional distribution volume (DV) values were normalized to the reference region (CER) to yield DV ratios (DVRs). Good agreement was observed between compartmental and Logan DVR values (e.g., PCG: r=0.89, slope=0.91); the Logan results were less variable. Nonspecific PIB retention was similar across subjects (n=15, Logan CER DV: 3.63+/-0.48). Greater retention was observed in AD cortical areas, relative to controls (P<0.05). The PIB retention in MCI subjects appeared either 'AD-like' or 'control-like'. The mean test/retest variation was approximately 6% in primary areas-of-interest. The Logan analysis was the method-of-choice for the PIB PET data as it proved stable, valid, and promising for future larger studies and voxel-based statistical analyses. This study also showed that it is feasible to perform quantitative PIB PET imaging studies that are needed to validate simpler methods for routine use across the AD disease spectrum.
The primary goal of this study was to assess the suitability of 11C-Pittsburgh compound B (11C-PiB) blood–brain barrier delivery (K1) and relative delivery (R1) parameters as surrogate indices of cerebral blood flow (CBF), with a secondary goal of directly examining the extent to which simplified uptake measures of 11C-PiB retention (amyloid-β load) may be influenced by CBF, in a cohort of controls and patients with mild cognitive impairment (MCI) and Alzheimer disease (AD). Methods Nineteen participants (6 controls, 5 AD, 8 MCI) underwent MR imaging, 15O-water PET, and 11C-PiB PET in a single session. Fourteen regions of interest (including cerebellar reference region) were defined on MR imaging and applied to dynamic coregistered PET to generate time–activity curves. Multiple analysis approaches provided regional 15O-water and 11C-PiB measures of delivery and 11C-PiB retention that included compartmental modeling distribution volume ratio (DVR), arterial- and reference-based Logan DVR, simplified reference tissue modeling 2 (SRTM2) DVR, and standardized uptake value ratios. Spearman correlation was performed among delivery measures (i.e., 15O-water K1 and 11C-PiB K1, relative K1 normalized to cerebellum [Rel-K1-Water and Rel-K1-PiB], and 11C-PiB SRTM2-R1) and between delivery measures and 11C-PiB retention, using the Bonferroni method for multiple-comparison correction. Results Primary analysis showed positive correlations (ρ ≈0.2–0.5) between 15O-water K1 and 11C-PiB K1 that did not survive Bonferroni adjustment. Significant positive correlations were found between Rel-K1-Water and Rel-K1-PiB and between Rel-K1-Water and 11C-PiB SRTM2-R1 (ρ ≈0.5–0.8, P < 0.0036) across primary cortical regions. Secondary analysis showed few significant correlations between 11C-PiB retention and relative 11C-PiB delivery measures (but not 15O-water delivery measures) in primary cortical areas that arose only after accounting for cerebrospinal fluid dilution. Conclusion 11C-PiB SRTM2-R1 is highly correlated with regional relative CBF, as measured by 15O-water K1 normalized to cerebellum, and cross-sectional 11C-PiB retention did not strongly depend on CBF across primary cortical regions. These results provide further support for potential dual-imaging assessments of regional brain status (i.e., amyloid-β load and relative CBF) through dynamic 11C-PiB imaging.
We typed 247 cases of nasopharyngeal carcinoma (NPC), a disease predominantly of the southern Chinese, and 274 controls from the Chao Shan region of China's Guangdong province for HLA A and B. Besides confirming the established associations with A2, A33, B46 and B58 (positive associations) and A11 (negative association), the results demonstrated a number of rarer alleles with strong negative association with NPC. Our data, combined with those from the previous studies in Southern Chinese, displayed the protective effects for A31 (odds ratio (OR) ¼ 0.0; 95% confidence interval (CI) ¼ 0 -0.11), B13 (OR ¼ 0.50; 95% CI ¼ 0.35 -0.69), B27 (OR ¼ 0.49; 95% CI ¼ 0.25 -0.92), B39 (OR ¼ 0.18; 95% CI ¼ 0.06 -0.48) and B55 (OR ¼ 0.32; 95% CI ¼ 0.14 -0.68), the ORs comparing individuals with or without each allele. Other ethnic groups do not display such large HLA-associated variation in NPC risk. We show that a linked NPC gene with dominant mode of action could not generate such large protective effects. The results provide strong supporting evidence for the existence of a southern Chinese specific, recessive NPC gene closely linked to the HLA region as a major determinant of the Chinese risk for the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.