SummaryIntracellular chloride channel protein 1 (CLIC1) is a 241 amino acid protein of the glutathione S transferase fold family with redox-and pH-dependent membrane association and chloride ion channel activity. Whilst CLIC proteins are evolutionarily conserved in Metazoa, indicating an important role, little is known about their biology. CLIC1 was first cloned on the basis of increased expression in activated macrophages. We therefore examined its subcellular localisation in murine peritoneal macrophages by immunofluorescence confocal microscopy. In resting cells, CLIC1 is observed in punctate cytoplasmic structures that do not colocalise with markers for endosomes or secretory vesicles. However, when these macrophages phagocytose serum-opsonised zymosan, CLIC1 translocates onto the phagosomal membrane. Macrophages from CLIC1 2/2 mice display a defect in phagosome acidification as determined by imaging live cells phagocytosing zymosan tagged with the pH-sensitive fluorophore Oregon Green. This altered phagosomal acidification was not accompanied by a detectable impairment in phagosomal-lysosomal fusion. However, consistent with a defect in acidification, CLIC1 2/2 macrophages also displayed impaired phagosomal proteolytic capacity and reduced reactive oxygen species production. Further, CLIC12/2 mice were protected from development of serum transfer induced K/BxN arthritis. These data all point to an important role for CLIC1 in regulating macrophage function through its ion channel activity and suggest it is a suitable target for the development of anti-inflammatory drugs.
The ability of dispersing carbon nanotubes (CNTs) in aqueous solutions by a starlike amphiphilic block copolymer with PPO-PEO segments (AP432) was investigated in detail. For comparison, two commercially available linear amphiphilic block copolymers, Pluronics L64 and F127, were also selected. It was found that AP432 and F127 can get good CNT dispersions, while L64 was proved to be unable to disperse CNTs. AP432 with five branches could disperse CNTs efficiently at much lower concentrations compared with the linear F127, although it has a smaller molecular weight and shorter terminal EO groups. This indicated clearly that, once branched, copolymers would get a much better ability to disperse CNTs. Increasing concentration of AP432 or F127 would disperse more CNTs, but at high copolymer concentrations the aggregation of dispersed CNTs was observed, which may be related to the free micelles formed by AP432 or F127 around CNTs. Other influencing factors such as the mass ratio of CNTs to copolymers and sonication time and strength were also discussed. From the molecular dynamics simulation results, it can be found that copolymers with five branches can gain better steric repulsions between adjacent CNTs, which is consistent with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.